MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY

SYLLABUS

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING (CSE)

REVISED & APPLICABLE FOR CSE – 16 and 17 BATCHES

REVISED ON January 2019

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (CSE) MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY (MIST) MIRPUR CANTONMENT, DHAKA-1216, BANGLADESH

PREFACE

Military Institute of Science and Technology (MIST) offers undergraduate and graduate programs in the field of science and engineering. This syllabus is for the undergraduate students in the Department of Computer Science and Engineering (CSE) of MIST. Although this syllabus has been written mainly for the students, student advisers and teachers will find it valuable as a reference document. Also, anybody who desires to know about the course contents of CSE Department will find this book helpful.

This syllabus provides general information about MIST, its historical background, faculties and departments. Different aspects of the course system, such as rules and regulations relating to admission, grading system, requirement for degrees have been elaborated. It describes the course requirements, course objectives, detailed course outline and courses offered in different terms.

The fields of Computer Science and Computer Engineering are changing rapidly. So the departmental as well as the non-departmental courses for CSE students have been revised to cater for recent advancements in these fields. The introduction of a basic course on computer systems for a gentle introduction of the field to the newcomers is among the worth mentionable changes. Number of subjects in some semesters has also been reduced keeping the total credit hour almost unchanged. Moreover, students now have more freedom in subject selection to specialize in a certain direction in their final years.

The CSE Program of MIST presently follows the OBE (Outcome Based Education) approach for conducting courses. Consequently, Integrated Design Project, which is one of OBE's salient features, has been introduced from 2019 in all corresponding undergraduate batches. The revised curriculum as incorporated in this syllabus is approved by the committee of courses. It will be placed before the academic council, MIST for necessary approval. CSE undergraduate students of all running batches (CSE-16, CSE-17, CSE-18 and onwards) will be under the revised syllabus from January 2019.

According to the policy of MIST, the syllabus is revised minimum once in every three years. Some of the information recorded in this syllabus is likely to be modified from time to time. Everybody concerned is strongly advised to be in touch with the advisers or the undersigned regarding modifications to be introduced later. It is hoped that this syllabus will be of much use to everybody concerned.

Dhaka, Bangladesh January 2019 Air Commodore Md Afzal Hossain, ndc, psc Head (Dept of CSE)

CERTIFICATE

Certified that this syllabus of Bachelor of Science in Computer Science and Engineering (BSc in CSE) of Military Institute of Science and Technology (MIST) is prepared by the committee as under:

Convener:

Air Commodore Md. Afzal Hossain, ndc, psc Head Department of Computer Science and Engineering (CSE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Members (External, Academic):

Dr. Muhammad Masroor Ali Professor Department of Computer Science and Engineering (CSE) Bangladesh University of Engineering and Technology (BUET) Dhaka-1200

Md. Abdus Sattar Associate Professor Department of Computer Science and Engineering (CSE) Bangladesh University of Engineering and Technology (BUET) Dhaka-1200

Members (External, Industry):

Engr. Mohammad Enamul Kabir Director (Training & Development) Bangladesh Computer Council (BCC) Agargaon, Sher-E-Bangla Nagar, Dhaka

Dr, Redwan Khan Head, IOT Grameen Phone Limited Basundhara Residential Area, Dhaka-1229

Mr, Engineer Md Hasan Mahfuz Chief Executive (CEO) Link Vision Software Solution Mirpur DOHS, Dhaka-1216

Mr, Engineer Milan Jahid Rushdid Bangladesh Association of Software and Information Services (BASIS) BDBL Bhaban (5th Floor - West) 12 Kawran Bazar, Dhaka -1215

Members (Internal, Department of CSE):

Brigadier General Mohammad Khalil-Ur-Rahman, psc, te Senior Instructor Department of Computer Science and Engineering (CSE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Dr. Md. Mahbubur Rahman Professor Department of Computer Science and Engineering (CSE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Colonel Md Mahboob Karim, psc Senior Instructor Department of Computer Science and Engineering (CSE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Colonel Siddharth Malik, SM Senior Instructor Department of Computer Science and Engineering (CSE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216 Lieutenant Colonel Amirul Azim, psc, EB Instructor Class 'A' Department of Computer Science and Engineering (CSE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Lieutenant Commander S M Anisur Rahman, (H-3), BN Instructor Class 'B' Department of Computer Science and Engineering (CSE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Members (Internal, Other Departments):

Department of Sc & Hum:

Wing Commander Md Nurul Huda Instructor Class 'A' Science and Humanities Department Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Major Md Mahabubar Rahman Shah, PhD, AEC Instructor Class 'B' Science and Humanities Department Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Department of EECE:

Department of Electrical, Electronic and Communication Engineering Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Member Secretary:

Lieutenant Commander S M Anisur Rahman, (H-3), BN Instructor Class 'B' Department of Computer Science and Engineering (CSE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

Assistant Member Secretary:

Sanjida Nasreen Tumpa Lecturer Department of Computer Science and Engineering (CSE) Military Institute of Science and Technology (MIST) Mirpur Cantonment, Dhaka-1216

CONTENTS

1

CHAPTER 1 GENERAL INFORMATION

1.1		Introduction		1
1.2		Attributes of MIST		2
1.3		Objectives		2
1.4		Location		2
1.5		Capabilities		3
1.6		Affiliation		3
1.7		Eligibility of Students for Admission in MIST		3
1.8		Admission Procedure		4
	1.8.1	Syllabus for Admission Test		4
	1.8.2	Final Selection		4
	1.8.3	Medical Checkup		5
1.9		Withdrawal Policy		5
	1.9.1	Definition of Terms		5
	1.9.2	General Policy of Withdrawal		6
	1.9.3	Expulsion/Withdrawal on Disciplinary Ground		7
	1.9.4	Withdrawal on Own Accord		7
	1.,,,,,			,
			••••••	

CHAPTER 2 THE DEPARTMENT OF COMPUTERSCIENCE AND ENGINEERING 8

Introduction		8
Historical Background		8
Study Programs		9
Laboratory Facilities of the Department		9
Research Activities		10
Co-curricular Activities		10
Programming Contests		10
2 Software and Hardware Project Competitions		10
3 Sports and Cultural Programs		11
2	Historical BackgroundStudy ProgramsLaboratory Facilities of the DepartmentResearch ActivitiesCo-curricular Activities1Programming Contests	Historical BackgroundStudy ProgramsLaboratory Facilities of the DepartmentResearch ActivitiesCo-curricular Activities1Programming Contests2Software and Hardware Project Competitions

CHAPTER 3 RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAM 12

rview		12
Course System		12
ber of Terms in a Year		12
tion of Terms		13
rse Pattern and Credit Structure		13
1	Course System ber of Terms in a Year ttion of Terms	Course Systemaber of Terms in a Yearation of Terms

3.6	Course Designation System		13
3.7	Assignment of Credits		14
3.8	Types of Courses		14
3.9	Course Offering and Instruction		15
3.10	Teacher Student Interaction		15
3.11	Student Adviser	•••••	15
3.12	Course Registration	•••••	15
3.13	Limits on the Credit Hours to be taken	•••••	16
3.14	Course Add/Drop		17
3.15	Withdrawal from a Term	•••••	17
3.16	The Grading System		17
3.17	Distribution of Marks	•••••	18
3.18	Collegiate and Non-collegiate		19
3.19	Calculation of CGPA	•••••	20
3.20	Minimum Earned Credit & GPA Requirement for Obt	aining Degree	21
3.21	Impacts of Grade Earned	•••••	21
3.22	Classification of Students	•••••	22
3.23	Performance Evaluation	•••••	22
3.24	Rules for Self-Study Courses	•••••	23
3.25	Rules for Courses Offered in Short Term	•••••	23
3.26	Minimum Earned Credit and GPA Requirement		24
3.27	for Obtaining Degree Application for Graduation and Award of		24
5.27	Degree		
3.28	Time Limits for Completion of Bachelor's		24
2.20	Degree		24
3.29	Attendance, Conduct and Discipline	•••••	24
3.30	Teacher-Student Interaction	•••••	24
3.31	Absence during a Term	•••••	25
3.32	Recognition of Performance	•••••	25
3.33	Types of Different Examination		25
3.34	Rules of Different Examinations	•••••	26
3.35	Irregular Graduation	•••••	29

CHAPTER 4 COURSE REQUIREMENTS FOR THE STUDENTS OF UNDERGRADUATE PROGRAM (B. Sc in CSE) OF THE DEPARTMENT OF CSE, MIST

LEVEL-1 TERM-I 30 LEVEL-1 TERM-II 30 LEVEL-2 TERM-I 31 LEVEL-2 TERM-II 31 APPLICABLE FOR CSE-17 LEVEL-3 TERM-I 32

30

LEVEL-3 TERM-II		32
LEVEL-4 TERM-I		33
LEVEL-4 TERM-II		34
SUMMARY		35
APPLICABLE FOR CSE-16		
LEVEL-4 TERM-I		36
LEVEL-4 TERM-II	•••••	37
SUMMARY		38

CHAPTER 5 DETAIL OUTLINE OF UNDERGRADUATE COURSES OFFERED BY THE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LEVEL-1 TERM-I	 39
LEVEL-1 TERM-II	 43
LEVEL-2 TERM-I	 45
LEVEL-2 TERM-II	 48
APPLICABLE FOR CSE-17	
LEVEL-3 TERM-I	 52
LEVEL-3 TERM-II	 77
LEVEL-4 TERM-I	 101
LEVEL-4 TERM-II	 121
APPLICABLE FOR CSE-16	 201
LEVEL-4 TERM-I	 201
LEVEL-4 TERM-II	 217

CHAPTER 1

GENERAL INFORMATION

1.1 Introduction

Military Institute of Science and Technology (MIST), the pioneer Technical Institute of Armed Forces, started its journey from 19 April 1998. It was the visionary leadership of the Honorable Prime Minister of People's Republic of Bangladesh Sheikh Hasina to establish a Technical Institute of Armed Forces. Accordingly, the Honorable Prime Minister, People's Republic of Bangladesh, Sheikh Hasina unveiled the Foundation Plaque on 19 April 1998. MIST is located at Mirpur Cantonment, which is on the northwest of Dhaka City. Mirpur Cantonment is well known to be as an Education Village of Bangladesh Armed Forces, a hub of knowledge for military and civil professionals. First Academic Program at MIST was launched on 31 January 1999 with the maiden batch of Civil Engineering (CE). The pioneer batch comprised of only military students. Computer Science & Engineering (CSE) Program got underway from academic session 2000-2001. Following those Programs, Electrical, Electronic & Communication Engineering (EECE) and Mechanical Engineering (ME) Programs including induction of Civil Students (both male and female) to various disciplines started from the session 2002-2003. Aeronautical Engineering (AE) program started at MIST from Academic Session 2008-2009. The department of Naval Architecture and Marine Engineering (NAME) began its journey from academic session 2012-2013 with 30 students. Number of students in this new dept has been increased to 50 with effect from academic year 2014. Each of CE, CSE, EECE and ME dept has started its 2nd section with 55 students with effect from academic year 2014. Foreign students from Sri Lanka were admitted for the first time in the same Academic Session. Presently students from Maldives, Palestine, Nepal and Ghambia are also studying different Engineering Programs. MIST enters into the domain of "Online Admission System" since 06 Sep 2010. MIST envisages creating facilities for military as well as civil students from home and abroad dedicated to pursue standard curriculum leading to Graduation Degree. As an Institution without any gender biasness, MIST is already on steady stride upholding its motto "Technology for Advancement". MIST remains committed to contributing to the wider spectrum of National Educational Arena and play a significant role in the development of Human Resources and ardently pursuing its goal to grow into a "Centre of Excellence".

MIST has well equipped class rooms with multimedia and web camera with internet facilities and Laboratories with modern equipment. The medium of instruction for all engineering programs is English. All academic programs of MIST are affiliated with the Bangladesh University of Professionals (BUP) and have close cooperation with Bangladesh University of Engineering and Technology (BUET) and Dhaka University (DU). Academic Session of MIST normally starts in the last week of January. Admission process starts in September/October and Admission Test held in November every year. Admission formalities are completed by December/January. The total number of intake in a year is 595. In general a maximum of 50% seats are allocated to Armed Forces Officers. MIST has other miscellaneous facilities such as Medical Centre, Fitness Centre, Cyber Café, Broadband Internet facilities, Library and Students' Accommodation (Male & Female). Out of six programs, so far four departments of MIST namely CE, EECE, ME and CSE have achieved accreditation from BAETE (IEB) which is certainly considered to be a pronounced achievement for its academic excellence in national and international arena.

1.2 Attributes of MIST

MIST is an educational entity where there is an opportunity of blending civil and military students with diversified skills, exposure, experience and outlook. Attributes those may be considered as strengths of MIST are:

- Rigorous admission and selection process for best possible screening.
- Interactive sessions in the classroom.
- Regular guest lectures and educational visits.
- Culture of timeliness, commitment and uninterrupted curriculum.
- Flexibility in choosing competent faculties through outsourcing.
- Well thought-out and continuous feedback and assessment system.
- Effective teaching through innovative method.
- Industrial attachment for on job training.
- Emphasis on code of conduct and dress code.
- Focus to develop students as a good human with all possible attributes of successful leader.
- Continuous effort to build strong industry-academia bondage.
- Tranquil, pollution free and secure campus life.

1.3 Objectives

- To establish a prestigious academic institute for studies in different fields of engineering and technology for military personnel and civil officials/ students from home and abroad at degree and post graduate levels.
- To organize courses on military science and technology in various areas of interest.
- To hold examinations and confer certificates of diplomas/ degrees, other academic distinctions, to and on persons who have persuaded a course of study and have passed examinations conducted by the institute.
- To confer research degrees, award fellowship, scholarship, exhibition, prizes, medals and honorary degrees to persons who have carried out research works under conditions as prescribed in the MIST regulations.
- To make provisions for advisory, research and consultation service including supervisions, material testing and to enter into suitable agreement with any persons/organizations for this purpose.
- To co-operate with Universities / Technical Institutions (both military and civil) including signing of Memoranda of Understanding (MOU) at home and abroad, in the manner and purpose as the institute may determine.
- To do such other acts, related to above-mentioned objectives, as may be required in order to expand the objectives of the institute.

1.4 Location

MIST is located at Mirpur Cantonment, northwest edge of the greater Dhaka city, a hub of knowledge for the armed forces. Mirpur Cantonment is a small, calm and quiet education

village and free from all possible pollution of a city life. A garland like lake with migratory birds, three sides with extended green fields in the summer and water bodies in the rainy season, whistling birds on the tree branches and overall bounty of nature adds to the already existing splendid academic atmosphere. Other neighboring academic institutions are National Defense College (NDC) and Defense Services Command and Staff College (DSCSC) - two international standard education centers.

1.5 Capabilities

- To conduct under-graduate programs leading to B.Sc. Engineering Degrees in the following disciplines:
 - Civil Engineering (CE)
 - Computer Science and Engineering (CSE)
 - Electrical, Electronic and Communication Engineering (EECE)
 - Mechanical Engineering (ME)
 - Aeronautical Engineering (AE)
 - Navel Architecture and Marine Engineering (NAME)
- To conduct post graduate program.
- To conduct diploma courses in surveying & mapping.
- To conduct diploma and certificate courses in CSE.
- To conduct professional advanced courses.

1.6 Affiliation

All academic programs of MIST are affiliated with the Bangladesh University of Professionals (BUP). All examinations are conducted as per the schedule approved by the same university. BUP also approves the results and awards certificates amongst the qualified students.

1.7 Eligibility of Students for Admission in MIST (Subject to review each year)

The students must fulfill the following requirements (as per the academic year 2011-12):

For Bangladeshi Students

Minimum qualifications to take part in the admission test are as follows:

- 1. Applicants must have passed SSC/Dhakhil/equivalent examination from Board of Intermediate and Secondary Education/ Madrasa Education Board/ Technical Education Board in Science group with minimum GPA 4.00 in a 5-point scale.
- 2. Applicants must have passed HSC/Alim/equivalent examination from Board of Intermediate and Secondary Education/ Madrasa Education Board/ Technical Education Board in Science group with minimum GPA 4.00 in a 5-point scale.
- 3. In HSC/Alim/equivalent examination the applicant must have obtained minimum "A" grade in any two (02) subjects out of four (04) subjects including Mathematics,

Physics, Chemistry & English and minimum "A-" (A minus) grade in rest two (02) subjects.

- 4. Applicants with GCE "O" Level/equivalent background must have to qualify in minimum five (05) subjects including Mathematics, Physics, Chemistry and English with minimum "B" grade in average.
- 5. Applicants with GCE "A" Level/equivalent background must have to qualify in minimum three (03) subjects including Mathematics, Physics and Chemistry with minimum "B" grades separately.
- 6. Applicants who have passed HSC or equivalent examination in the current year or one year before the notification for admission can apply.
- 7. Sex: Male and female.

For Foreign Students

Maximum 3% of overall vacancies available will be kept reserved for the foreign students and will be offered to foreign countries through AFD of the Government of the People's Republic of Bangladesh. Applicants must fulfill the following requirements:

- 1. Educational qualifications as applicable for Bangladeshi civil students or equivalent.
- 2. Must have security clearance from respective Embassy/ High Commission in Bangladesh.
- 3. Sex: Male and female.

1.8 Admission Procedure

1.8.1 Syllabus for Admission Test

Admission test will be conducted on the basis of the syllabus of Mathematics, Physics, Chemistry and English (Comprehension and Functional) subjects of HSC examinations of all Boards of Secondary and Higher Secondary School Certificates. Admission test will be conducted out of 200 marks and the syllabus and distribution of marks is given below:

Serial	Subjects	Syllabus	Marks
1.	Mathematics	Syllabi of the current year of HSC	80
2.	Physics	Examinations of all Boards of	60
3.	Chemistry	Intermediate and Secondary Education	40
4.	English	Comprehension and functional	20
	Total =		200

1.8.2 Final Selection

Minimum qualifying marks in the written admission test is 40%. But in special circumstances for fulfillment of specified number of seats, President Admission Committee with approval

from Commandant, MIST, may consider relaxation of this condition. Merit list of candidates for final selection and admission to MIST will be prepared on the basis of the following:

Written Admission Test	75%.
GPA of SSC/ Dakhil (without 4th subject) / "O"level/ equivalent	10%.
examination	
Total GPA of Mathematics, Physics and Chemistry of HSC/ Alim/ "A"	15%.
level/ equivalent examination	
Total	100%

In case of tie, merit position will be determined on the basis of marks obtained in admission test in Mathematics, Physics, Chemistry and English respectively. Further dispute will be solved giving priority of result of HSC over SSC examination.

1.8.3 Medical Checkup

Civil candidates selected through admission test will go for medical checkup in MIST/CMH. If the medical authority considers any candidate unfit for study in MIST due to critical/contagious/mental diseases as shown in medical policy of MIST will be declared unsuitable for admission.

1.9 Withdrawal Policy

The MIST has been established with an aim of providing quality education in various disciplines of Engineering leading to B.Sc Engineering to be conferred by BUP. A definite standard of education and general discipline will be followed in every level of the program. The unsuccessful students will therefore be withdrawn from the institute.

1.9.1 Definition of Terms

Permanent Withdrawal

It will imply a complete/permanent discontinuity from any course/program of the institute.

Temporary Withdrawal

It means that the student has been allowed by the Academic Council, MIST to discontinue temporarily from any course/program for a definite period. The student, so withdrawn, may re-enter the course as per terms and conditions as set by the authority. **Permanent Expulsion**

It means expulsion permanently from the institution on disciplinary ground. A student, if expelled permanently will never be allowed to re-enter the course or similar program in MIST and be subjected to other terms and conditions as set by the authority while approving the permanent expulsion order.

Temporary Expulsion

It means expulsion from an academic course/program for a certain period on disciplinary ground. A student, if expelled temporarily, may be allowed to re-enter the course/program on expiry of the punishment period and on fulfillment of other terms and conditions (if any) as set by the authority while approving the temporary expulsion order.

1.9.2 General Policy of Withdrawal

The under graduate (B.Sc) Engineering programs, in the disciplines of CE, EECE, ME, CSE and AE are planned for 04 regular levels, comprising of 08 regular terms. It is expected that all students will earn degree by clearing all the offered courses in the stipulated time. In case of failure the following policies will be adopted:

- Students failing in maximum two courses/subjects in any level, each comprising of two regular terms will be allowed to appear in the referred/re-examination on failed course(s)/subject(s) after a short term as per academic schedule.
- Referred/re-examination, after a short term is to be conducted within 02 (two) weeks of commencement of the next academic session at the latest.
- Students failing in maximum one course/subject in the referred/re-examination will be
 promoted to the next higher level. The failed course/subject will be termed as
 "Backlog" subject and the students have to pass the "Backlog" subject in the next
 scheduled referred/re-examination, but without any short term. Otherwise, he/she will
 be withdrawn permanently from the course/program.
- No student will be allowed to appear in the referred/re-examination in the same subject more than twice in the whole undergraduate program.
- Students in all levels will be allowed to appear in the referred/re-examination on two courses/subjects including the "Backlog" one.
- Students will be promoted to the second term of each level irrespective of their results in the first term of the level.
- Students failing in three or more courses/subjects in any level, comprising of two
 regular terms, will be allowed to repeat the level once. Students repeating a level will
 be granted exemption for that/those subject(s) in which they earned "B+" and above
 grade in the previous academic year. For a military student, repeating a level will be
 subject to the approval of the respective Services Headquarters.
- Students will be allowed to repeat a particular level only once in the whole undergraduate program.
- After level-4 referred/re-examination, if any military student fails in maximum one course/subject, but not the "Backlog"subject, then he/she will leave MIST and will be allowed to appear in the next scheduled referred/re-examination of the respective course. In that examination if he/she cannot pass the course/subject, or if he/she does not appear in the referred examination within 06 (six) years of registration will lose the scope of completing graduation. This failure will also be recorded in the dossier of military student officers.
- In case of sickness, which leads to missing of more than 40% classes or miss term final examination (supported by requisite medical documents), students may be allowed to withdraw temporarily from that term and repeat the whole level with the regular level in the next academic session, subject to the approval of Academic Council, MIST. However, he/she has to complete the whole undergraduate program within 06 (six) academic years from the date of his/her registration.
- Whatever may be the cases, students have to complete the whole undergraduate program within 06 (six) academic years from the date of registration.

• Failure to secure/achieve minimum CGPA of 2.20 in two consecutive levels will also lead to withdrawal of the student from the program.

1.9.3 Expulsion/Withdrawal on Disciplinary Ground

Unfair Means

Adoption of unfair means may result in expulsion of a student from the program and so from the institution. The Academic Council of MIST will authorize such expulsion on the basis of recommendation of the Disciplinary Committee, MIST and as per policy approved by the affiliating university. Following would be considered as unfair means adopted during examinations and other contexts:

- Communicating with fellow students for obtaining help in the examination.
- Copying from another student's script/report/paper.
- Copying from desk or palm of a hand or from other incriminating documents.
- Possession of any incriminating document whether used or not.

Influencing Grades

Academic council of MIST may expel/withdraw any student for approaching directly or indirectly in any form to influence a teacher or MIST authority for grades.

Other Indiscipline Behaviors

Academic council of MIST may withdraw/expel any student on disciplinary ground, if any form of indiscipline or unruly behavior is seen in him/her which may disrupt the academic environment/program or is considered detrimental to MIST's image.

Immediate Action by the Disciplinary Committee of MIST

The disciplinary committee, MIST may take immediate disciplinary action against any student of the institution. In case of withdrawal/expulsion, the matter will be referred to the academic council, MIST for post-facto approval.

1.9.4 Withdrawal on Own Accord

Permanent Withdrawal

A student who has already completed some courses and has not performed satisfactorily may apply for a permanent withdrawal.

Temporary Withdrawal

A student, if he/she applies, may be allowed to withdraw temporarily from the program, subject to the approval of academic council of MIST, but he/she has to complete the whole program within 06 (six) academic years from the date of his/her registration.

CHAPTER 2

THE DEPARTMENT OF COMPUTERSCIENCE AND ENGINEERING

2.1 Introduction

Computer plays vital and in fact indispensable role in all fields of modern human activities. Consequently, Computer Science and Engineering has established itself as one of the most important branches of engineering. Recent development in computer has a considerable impact on society. It has already expanded to all fields of study starting from genetic engineering to space technology. Recent development in Artificial Intelligence has taken the human history a long way. That day is not very far when man can make machine like him.

The Department of Computer Science and Engineering is one of the pioneer Departments of this Institute providing top-quality education in Computer Science and Engineering (CSE) at its undergraduate program. ICT is the leading booming sector in present day. It is already declared as a thrust sector in Bangladesh. Keeping this in mind the department offers CSE course to produce computer specialist.

In addition to the above, Department of Computer Science and Engineering is going to begin M.Sc. (Engg)/M.Engg programs in October, 2014. In future there will be opportunity for postgraduate studies and research leading to higher degrees i.e. Ph.D. There are financial assistance program for the poor and meritorious students too.

2.2 Historical Background

Department of Computer Science and Engineering began its journey from the academic session in 2000-2001 as Department of CSIT with military students only. Later, civil students were inducted in the next session. The department was renamed as Department of CSE in January 2003. This year (2013), the 13th batch has begun their classes in Level-1. Over the years, this ever-flourishing department has been providing the technological foundation on ICT, scholarly guidance and leadership skills to the students that have contributed to produce 381 highly qualified and skilled CSE graduates. Our graduates are working proudly both at home and abroad. Besides, a good number of graduates are pursuing higher studies abroad with scholarship. Moreover, our CSE students actively participate in various events like national and international computer programming competition, Software development competitions, Gaming and Robotic contest, Mobile Apps development, Debate and English speaking competition, national and international seminar and workshops on ICT and exhibit brilliant performances. With the relentless effort of the qualified, sincere and enthusiastic faculty and able guidance of the respected Commandant and Dean of MIST, the department has become a unique one of its field. With its excellent professional competence, expert teaching viewpoints and capabilities of training, B.Sc. in Computer Science and Engineering (B.Sc. CSE) degree program has achieved accreditation from BAETE (IEB) on 10 July 2013 with a grade as "Good". The dept has started its 2^{nd} section with 55 students with effect from academic session 2014.

2.3 Study Programs

The Department of Computer Science and Engineering offers the degree of B. Sc. Engg. The courses and syllabus followed by this department for the above degree is the most modern ones like that of advanced countries as well as appropriate to the local needs. The syllabus is designed as to contain all the necessary study materials so that a graduate can face the engineering problems readily after graduation. Also, the syllabus is reviewed and necessary changes are made in every three years by a "committee of courses" comprising the best academicians and experts of the field of Computer Science and Engineering coming from MIST and other leading Universities and Organizations.

2.4 Laboratory Facilities of the Department

The department endeavors to provide its faculty members and students adequate laboratory, library and other facilities. Departmental undergraduate courses are well supported by the following laboratories:

Software Engineering Lab: This department has a software engineering lab consisting of 60 computers as workstations. With co-located Artificial Intelligence and VLSI lab, class can be conducted for 70 students at a time providing each one PC.

Digital Lab: This department has a digital lab where sessional classes of different courses on digital electronics can be conducted. This lab is enriched with modern electronic equipment and facilities.

Multimedia Lab: This department has a multimedia lab with modern HP color laser printers, multimedia projector, scanner and document cameras. Student would be highly benefited through this lab in their project works.

Artificial Intelligence and VLSI Lab: There is an Artificial Intelligence and VLSI lab consisting of 70 computers as workstations in this department. With co-located software engineering lab, classes can be conducted for 70 students at a time providing each one PC and other equipment.

Network and Internet Lab: This department has a Network and Internet lab of 70 computers as workstations. All necessary network equipment and accessories are available in the lab for conducting sessional classes.

Microprocessor and Microcontroller Lab: This department has a Microprocessor and Microcontroller lab enriched with latest Micro kits.

Interfacing Lab: This department has an interfacing lab where sessional classes of different course on computer interfacing can be conducted. Moreover, students undertaking different interfacing project also are assisted by all required accessories and components. Regular project showcase are held in this lab.

Graphics and Multimedia Lab: This department has a Graphics and Multimedia lab where sessional classes of different course on computer graphics and multimedia theory can be conducted. This lab has 70 computers donated by Indian government in 2013. Moreover,

students undertaking different graphics design project also are assisted by all required accessories and components. Regular project showcase are held in this lab.

Image Processing Lab: This department has an Image processing lab of 30 computers donated by Indian government in 2013 as workstations. All necessary image processing equipment and accessories are available in the lab for conducting sessional classes.

Teacher's PC Lab. This department has an additional lab for the teachers, who will be mostly helping the students for thesis and/or project work.

Other Computing Resources: This department has IBM and HP servers connecting all the PCs of MIST by Intranet, providing internet and other services. It has all the necessary equipment for multimedia lab. We have 24 hours Internet facilities including Wi-Fi.

Labs Planned for Future Expansion: This department will have following labs in future:

- (1) Hardware Training Lab
- (2) Hardware Maintenance Lab
- (3) Mobile Computing lab

Note: The laboratories of CSE Department are also being utilized by the students of other departments for sessional classes and research work of relevant subject/courses.

2.5 Research Activities

The research work undertaken by the teachers and students of this department in the last few years is diversified in nature. The faculty members have a good number of publications in different national and international conferences and journals. MIST also regularly publishes an annual technical journal, MIST Journal, where faculties and students of CSE department put their contributions.

2.6 Co-curricular Activities

Students of this department have achieved remarkable success in co-curricular activities like programming contests, software and hardware project competitions, software fair etc. Besides, students take part and show significant performance in debate, sports and cultural programs.

2.6.1 Programming Contests

CSE department programming team has been participating and in various national and international programming contests regularly and performing well. The Department team has been regularly participating in the Dhaka Regional final of ACM (Association for Computing Machinery) International Collegiate Programming Contest (ACM-ICPC). In ACM-ICPC Dhaka Regional 2008, MIST team achieved 7th position and ACM-ICPC Dhaka Regional 2009, MIST team placed 8th position.

2.6.2 Software and Hardware Project Competitions

CSE department students regularly participate in different software and hardware project competitions and perform well. Notably, in 2011, software named "BANGLA TEXT TO BRAILLE TRANSLTOR" was developed by four CSE graduates from MIST (Md. Osman

Gani, F M Mahbub-ul-Islam, Samiul Azam and Ahmad Imtiaz Khan). This software came up as the winner of prestigious "BASIS IT Innovation Search Program 2011" and runner up of "National Digital Innovation Award 2011".

2.6.3 Sports and Cultural Programs

CSE Department became champion in inter-departmental Programming Contest-2010, Interdepartmental Table Tennis Competition-2011, Inter-departmental Basketball Competition-2011, Inter-departmental Volleyball Competition-2011, Inter-departmental Cultural Competition 2012 and 2013 and runner up in Inter-departmental Sports Competition 2014.

CHAPTER 3

RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAM

3.1. Overview

MIST has introduced course system for undergraduate studies from the academic session 2017 - 18. Therefore, the rules and regulations mentioned in this paper will be applicable to students for administering undergraduate curriculum through the Course System. This will be introduced with an aim of creating a continuous, even and consistent workload throughout the term for the students.

3.2. The Course System

The salient features of the Course System are as follows:

a. Number of theory courses will be generally 5 in each term. However, with the recommendation of course coordinator and Head of the Department, Commandant MIST may allow relaxation in this regard. This relaxation is to be reported to Academic Council of MIST.

- b. Students will not face any level repeat for failing.
- c. Students will get scope to improve their grading.

d. Introduction of more optional courses to enable the students to select courses according to their individual needs and preferences.

- e. Continuous evaluation of students' performance.
- f. Promotion of student-teacher interaction and contact.

Beside the professional courses pertaining to each discipline, the undergraduate curriculum gives a strong emphasis on acquiring thorough knowledge in the basic sciences of mathematics, physics and chemistry. Due importance is also given on the study of several subjects in humanities and social sciences.

The first two years of bachelor's degree programs generally consist of courses on basic engineering, general science and humanities subjects; while the third and subsequent years focus on specific disciplines.

3.3. Number of Terms in a Year

There will be two terms in an academic year.

- 1. Term I (Spring)
- 2. Term II (Fall)

In addition to these two regular terms there will be a short term after the Term II of each academic session. During the short term, students can take only failed courses to cover up the credit deficiencies.

Respective departments will take the decisions about courses to be offered during each short term depending upon the availability of course teachers and number of students willing to take a particular course.

3.4. Duration of Terms

The duration of each of Term I (Spring) and Term II (Fall) is maximum 22 weeks. Following table has the breakdown of a typical term.

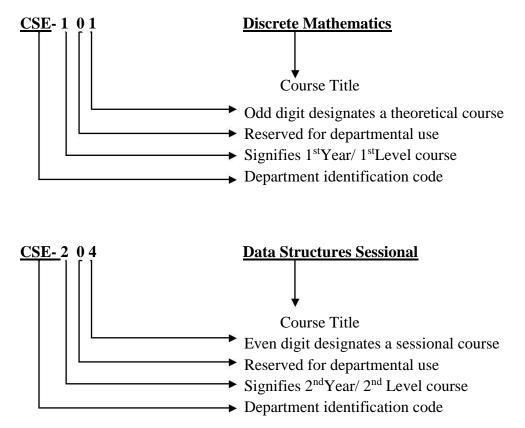
Ser	Events	Durations
1.	Classes before Mid Term	7 weeks
2.	Mid Term Vacation	1 week
3.	Classes after Mid Term	7 weeks
4.	Makeup Classes and Preparatory leave	2/3 weeks
5.	Term Final Examination	2/3 weeks
6.	Term End Vacation	1/2 week

The duration of a Short Term will be around 7 weeks of which about 6 weeks will be spent for class lectures and one week for Term Final Examination. The duration for Short Term and Examination will be as under:

1.	Classes	6 weeks
2.	Final Examination	1 week
Total		7 Weeks

3.5. Course Pattern and Credit Structure

The undergraduate program is covered by a set of theoretical courses along with a set of laboratory (sessional) courses to support them.


3.6. Course Designation System

Each course is designated by a maximum of three/four letter code identifying the department offering the course followed by a three-digit number having the following interpretation:

a. The first digit corresponds to the year/level in which the course is normally taken by the students.

b. The second digit is reserved for departmental use. It usually identifies a specific area/group of study within the department.

c. The last digit is an odd number for theoretical courses and an even number for sessional courses.

The course designation system is illustrated as follows:

3.7. Assignment of Credits

The assignment of credits to a theoretical course follows a different rule from that of a sessional course.

a. Theoretical Courses: One lecture per week per term is equivalent to one credit.

b. Sessional Courses: Credits for sessional courses is half of the class hours per week per term.

Credits are also assigned to project and thesis work taken by the students. The amount of credits assigned to such work varies from one discipline to another.

3.8. Types of Courses

The types of courses included in the undergraduate curricula are divided into the following groups:

a. <u>Core Courses</u>: In each discipline, a number of courses are identified as core courses, which form the nucleus of the respective bachelor's degree program. A student has to complete all the designated core courses of his/her discipline.

b. <u>Prerequisite Courses</u>: Some of the core courses are identified as prerequisite courses for a specific subject.

c. <u>Optional Courses</u>: Apart from the core courses, the students can choose from a set of optional courses. A required number of optional courses from a specified group have to be chosen.

3.9. Course Offering and Instruction

The courses to be offered in a particular term are announced and published in the Course Catalog along with the tentative Term Schedule before the end of the previous term. The courses to be offered in any term will be decided by Board of Undergraduate Studies (BUGS) of the respective department. The courses that have been eliminated in the reviewed syllabus may be offered as deemed necessary due to failed or not registered in these courses in previous terms by any student.

Each course is conducted by a course teacher who is responsible for maintaining the expected standard of the course and for the assessment of students' performance. Depending on the strength of registered students (i.e. on the number of students) enrolled for the course, the teacher concerned might have course associates and Teaching Assistants (TA) to aid in teaching and assessment.

3.10. Teacher-Student Interaction

The new course system encourages students to come in close contact with the teachers. For promotion of a high level of teacher-student interaction, each student is assigned to an adviser and the student is free to discuss all academic matters with his/her adviser. Students are also encouraged to meet any time with other teachers for help and guidance in academic matters. However, students are not allowed to interact with teachers after the moderation of questions.

3.11. Student Adviser

One adviser is normally appointed for a group of students by the BUGS of the concerned department. The adviser advises each student about the courses to be taken in each term by discussing the academic program of that particular term with the student.

However, it is also the student's responsibility to keep regular contact with his/her adviser who will review and eventually approve the student's specific plan of study and monitor subsequent progress of the student.

For a student of second and subsequent terms, the number and nature of courses for which he/she can register is decided on the basis of academic performance during the previous term. The adviser may permit the student to drop one or more courses based on previous academic performance.

3.12. Course Registration

Any student who uses classroom, laboratory facilities or faculty-time is required to register formally. Upon admission to the MIST, students are assigned to advisers. These advisers guide the students in choosing and registering courses.

3.12.1. <u>Registration Procedure</u>. At the commencement of each term, each student has to register for courses in consultation with and under the guidance of his/her

adviser. The date, time and venue of registration are announced in advance by the Registrar's Office. Counseling and advising are accomplished at this time. It is absolutely essential that all the students be present for registration at the specified time.

3.12.2. Pre-conditions for Registration.

a. For first year students, department-wise enrollment/admission is mandatory prior to registration. At the beginning of the first term, an orientation program will be conducted for them where they are handed over with the registration package on submission of the enrolment slip.

b. Any student, other than the new batch, with outstanding dues to the MIST or a hall of residence is not permitted to register. Each student must clear their dues and obtain a clearance certificate, upon production of which, he/she will be given necessary Course Registration Forms to perform course registration.

c. A student is allowed to register in a particular course subject to the class capacity constraints and satisfaction of pre-requisite courses. However, even if a student fails in a pre-requisite course in any term, the concerned department (BUGS) may allow him/her to register for a course which depends upon the pre-requisite course provided that his/her attendance and performance in the continuous assessment of the mentioned pre- requisite course is found to be satisfactory.

- 3.12.3. **<u>Registration Deadline</u>**. Each student must register for the courses to be taken before the commencement of each term. Late registration is permitted only during the first week of classes. Late registration after this date will not be accepted unless the student submits a written application to the registrar through the concerned Head of the department explaining the reasons for delay. Acceptable reasons may be medical problems with supporting documents from the Medical Officer of MIST or some other academic commitments that prohibit enrollment prior to the last date of registration.
- 3.12.4. <u>Penalty for Late Registration</u>. Students who fail to register during the designated dates for registration are charged a late registration fee of Tk. 100.00 (One hundred only) per credit hours. Penalty for late registration will not be waived.

3.13. Limits on the Credit Hours to be taken

A student should be enrolled for at least 15 credit hours and is allowed to take a maximum of 24 credit hours. Relaxation on minimum credit hours may be allowed. A student must enroll for the sessional courses prescribed in a particular term within the allowable credit hour limits.

In special cases where it is not possible to allot the minimum required 15 credit hours to a student, the concerned department (BUGS) may permit with the approval of the Comdt, a lesser number of credit hours to suit individual requirements. Such cases are also applicable to students of Level 4 requiring less than 15 credit hours for graduation.

3.14. Course Add/Drop

A student has some limited options to add or drop courses from the registration list. Addition of courses is allowed only within the first two weeks of a regular term and only during the first week of a short term. Dropping a course is permitted within the first four weeks of a regular term and two weeks of a short term.

Any student willing to add or drop courses has to fill up a Course Adjustment Form. This also has to be done in consultation with and under the guidance of the student's respective adviser. The original copy of the Course Adjustment Form has to be submitted to the Registrar's Office, where the required numbers of photocopies are made for distribution to the concerned adviser, Head, Dean, Controller of Examinations and the student.

All changes must be approved by the adviser and the Head of the concerned department. The Course Adjustment Form has to be submitted after being signed by the concerned persons.

3.15. Withdrawal from a Term

If a student is unable to complete the Term Final Examination due to serious illness or serious accident, he/she may apply to the Head of the degree awarding department for total withdrawal from the term before commencement of term final examination. However application may be considered during term final examination in special case. The application must be supported by a medical certificate from the Medical Officer of MIST. The concerned student may opt for retaining the sessional courses of the term. The Academic Council will take the final decision about such applications. However, the total duration for graduation will not exceed 6 academic years.

3.16. The Grading System

The total performance of a student in a given course is based on a scheme of continuous assessment, for theory courses this continuous assessment is made through a set of quizzes, class tests, class evaluation, class participation, homework assignment and a term final examination. The assessments for sessional courses are made by evaluating performance of the student at work during the class, viva-voce during laboratory hours and quizzes. Besides that, at the end there will be a final lab test. Each course has a certain number of credits, which describes its corresponding weightages. A student's performance is measured by the number of credits completed satisfactorily and by the weighted average of the grade points earned. A minimum grade point average (GPA) is essential for satisfactory progress. A minimum number of earned credits also have to be acquired in order to qualify for the degree. Letter grades and corresponding grade points will be given as follows:

Numerical Markings	Grade	Grade Points
80% and above	A+	4.00
75% to below 80%	А	3.75
70% to below 75%	A-	3.50
65% to below 70%	B+	3.25
60% to below 65%	В	3.00
55% to below 60%	B-	2.75
50% to below 55%	C+	2.50
45% to below 50%	С	2.25
40% to below 45%	D	2.00

Numerical Markings	Grade	Grade Points
below 40%	F*	0.00
Incomplete	Ι	-
Withdrawal	W	-
Project/ Thesis continuation	Х	-

* Subject in which the student gets F grade shall not be regarded as earned credit hours for the calculation of Grade Point Average (GPA).

3.17. Distribution of Marks

- **3.17.1.** <u>Theory</u>. Marks distribution of Theory courses will be according to exam policy.
- 3.17.2. <u>Sessional/Practical Examinations</u>. Sessional courses are designed and conducted by the concerned departments. Examination on sessional/practical subjects will be conducted by the respective department before the commencement of term final examination. The date of practical examination will be fixed by the respective department. Students will be evaluated in the sessional courses on the basis of the followings (all or as decided by the Examination Sub-Committee):

Total	100%
e. <u>Viva Voce</u>	10
d. Quiz Test	30
c. Lab Test/Report Writing/project work/Assignment	50
b. Class performance/observation	5
a. Class Participation	5

For B.Sc. in CSE program, the marks distribution of sessional courses will be distributed according to the type of the sessional course. The distributions of marks for three types of sessional are given below:

Marks distribution of lab based sessionals

Category	Marks %
Lab test	40
Quiz	20
Viva	10
Class Performance	10
Report	10
Class Assessment	10
Total	100

Marks distribution of project based sessionals

Category	Marks %
Project	40
Quiz	20
Viva / Presentation	10
Class Participation	10
Report	10
Class Assessment	10
Total	100

Marks distribution of programming based sessionals

Category	Marks %
Online Test – 1	25
Online Test – 2	25
Viva	10
Class Participation	10
Class Assessment	30
Total	100

3.17.3. <u>Sessional Course of Communicative English</u>. The distribution will be as under:

То	tal	100%
e.	Viva Voce	20
d.	Group Presentation	20
c.	Quiz	20
b.	Individual Presentation	20
a.	Class Participation	20

3.17.4. Basis for awarding marks for Class Participation.

This will be as follows:

	Marks
90% and above	100%
85% to less than 90%	80%
80% to less than 85%	60%
75% to less than 80%	40%
Below 75%	0%

3.18. Collegiate and Non-collegiate

Students having Class Participation of 90% or above in individual subject will be treated as collegiate and less than 90% and up to 75% will be treated as non-collegiate in that subject. The non-collegiate student(s) may be allowed to appear in the examination subject to payment of non-collegiate fee/fine of an amount fixed by MIST/BUP. Students having Class

Participation below 75% will be treated as dis-collegiate and will not be allowed to appear in the examination and treated as fail. But in a special case such students may be allowed to appear in the examination with the permission of Commandant and it must be approved by the Academic Council.

3.19. Calculation of CGPA

Grade Point Average (GPA) is the weighted average of the grade points obtained of all the courses passed/completed by a student. For example, if a student passes/completes n courses in a term having credits of C1, C2, ..., Cn and his grade points in these courses are G1, G2,

Gn respectively, then

$$GPA = \frac{Grade \ points \ earned \ in \ the \ semester}{Credits \ completed \ in \ the \ semester}$$

= <u>Summation of (Credit hours in a course * Grade point earned in that course)</u> Total number of credit hours completed

$$=\frac{\sum_{i=1}^{n}Ci*Gi}{\sum_{i=1}^{n}Ci}$$

The Cumulative Grade Point Average (CGPA) is the weighted average of the GPA obtained in all the terms passed/completed by a student. For example, if a student passes/ completes n terms having total credits of TC1, TC2, ..., TCn and his GPA in these terms are GPA1, GPA2,..., GPAn, respectively then

$$CGPA = \frac{\sum_{i=1}^{n} TCi * GPAi}{\sum_{i=1}^{n} TCi}$$

Numerical Example

Suppose a student has completed eight courses in a term and obtained the following grades:

Course	Credit Ci	Grade Points	Gi	Ci*Gi
EECE-163	3.00	А	3.75	11.25
EECE-164	0.75	A+	4.00	3.00
MATH-141	3.00	A-	3.50	10.50
PHY-103	3.00	B+	3.25	9.75
HUM-101	3.00	А	3.75	11.25
HUM-102	1.50	А	3.75	5.625
CSE-101	3.00	А	3.75	11.25
CSE-103	3.00	A-	3.50	10.50
CSE-104	1.5	B+	3.25	4.875
Total	21.75			78.00

$$GPA = \frac{78.00}{21.75} = 3.59$$

Level	Term	Earned Credit	Earned GPA	TCi*GPAi
		Hours		
		TCi	GPA _i	
1	Ι	21.75	3.75	81.5625
1	II	20.75	3.61	74.9075
2	Ι	19.50	3.21	62.595
2	II	21.00	2.98	62.58
Total		83.00		281.645

Suppose a student has completed four terms and obtained the following GPA:

$$CGPA = \frac{281.645}{83} = 3.39$$

3.20. Minimum Earned Credit and GPA Requirement for Obtaining Degree

Minimum credit hour requirements for the award of bachelor's degree in engineering (B.Sc. Engineering) and other discipline will be decided as per existing rules. The minimum GPA requirement for obtaining a Bachelor's degree in Engineering and Architecture is 2.20.

3.21. Impacts of Grade Earned

The courses in which a student has earned a 'D' or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained an 'F' grade will not be counted towards his/her earned credits or GPA calculation. However, the 'F' grade will remain permanently on the Grade Sheet and the Transcript.

A student who obtains an 'F' grade in a core course will have to repeat that particular course. However, if a student gets an 'F' in an optional course, he/she may choose to repeat that course or take a substitute course if available. When a student will repeat a course in which he/she has previously obtained an 'F', he/she will not be eligible to get a grade better than 'B+' in that repeated course.

If a student obtains a grade lower than 'B+' in a particular course he/she will be allowed to repeat the course only once for the purpose of grade improvement. However, he/she will not be eligible to get a grade better than 'B+' for an improvement course.

A student will be permitted to repeat for grade improvement purposes a maximum of 6 courses in BSc. Engineering programs and a maximum of 7 courses in B. Arch. program.

If a student obtains a 'B+' or a better grade in any course he/she will not be allowed to repeat the course for the purpose of grade improvement.

3.22. Classification of Students

Level	Credit Hours Earned		
Level	Engineering/URP	Architecture	
Level 1	0.0 to 36.0	0.0 to 34.0	
Level 2	More than 36.0 to 72.0	More than 34.0 to 72.0	
Level 3	More than 72.0 to 108.0	More than 72.0 to 110.0	
Level 4	More than 108.0	More than 110.0 to 147.0	
Level 5		More than 147.0	

At MIST, regular students are classified according to the number of credit hours completed/ earned towards a degree. The following classification applies to all the students:

However, before the commencement of each term all students other than new batch are classified into three categories:

a. **Category 1:** This category consists of students who have passed all the courses described for the term. A student belonging to this category will be eligible to register for all courses prescribed for the upcoming term.

b. **Category 2:** This category consists of students who have earned a minimum of 15 credits but do not belong to category 1. A student belonging to this category is advised to take at least one course less since he might have to register for one or more backlog courses as prescribed by his/her adviser.

c. **Category 3:** This category consists students who have failed to earn the minimum required 15 credits in the previous term. A student belonging to this category is advised to take at least two courses less than a category 1 student subject to the constraint of registering at least 15 credits. However, he will also be required to register for backlog courses as prescribed by the adviser.

Definition of Graduating Student. Graduating students are those students who will have ≤ 24 credit hour for completing the degree requirement.

3.23. Performance Evaluation

The performance of a student will be evaluated in terms of two indices, viz. Term Grade Point Average and Cumulative Grade Point Average which is the grade average for all the terms completed.

Students will be considered to be making normal progress toward a degree if their Cumulative Grade Point Average (CGPA) for all work attempted is 2.20 or higher. Students who regularly maintain a term GPA of 2.20 or better are making good progress toward the degrees and are in good standing with MIST. Students who fail to maintain this minimum rate of progress will not be in good standing. This can happen when any one of the following conditions exists.

a. The term GPA falls below 2.20.

- b. The Cumulative Grade Point Average (CGPA) falls below 2.20.
- c. The earned number of credits falls below 15 times the number of terms attended.

All such students can make up their deficiencies in GPA and credit requirements by completing courses in the subsequent term(s) and backlog courses, if there are any, with better grades. When the minimum GPA and credit requirements are achieved the student is again returned to good standing.

3.24. Rules for Self-Study Courses

A self-study course is among the regular courses listed in the course catalog. This type of course is offered only in exceptional cases. The following rules are applicable to all self study courses:

a. Whether a course is to be floated as a self study course will be decided by the Head of the concerned department in consultation with the teacher/course coordinator concerned. Such a decision also has to be reported to the Academic Council.

- b. A self study course may be offered in a particular term only if the course is not running in that term as a regular course.
- c. The self study course is offered to a student in his/her graduating term if it helps him/her to graduate in that term.

d. A student is allowed to register for a maximum of two theory courses on a self-study basis.

e. Students should have 75% Class Participation.

f. Normally no lecture will be delivered for a self study course but laboratory/design classes may be held if they form part of a course.

- g. The course coordinator/course teacher will assign homework, administer quizzes, and final examination for giving assessments at the end of the term.
- h. No Laboratory/Sessional Course can be taken as self study course.

3.25. Rules for Courses Offered in Short Term

A Short Term course will be conducted after one week of completion of Term II Final Examination in each year. The following rules are applicable to Short Term courses:

a. The courses to be run during the short term shall be decided on the recommendations of departments on the basis of essential deficiencies to be made up by a group of students. Once floated, other students could be allowed to register in those courses subject to the capacity constraints and satisfaction of prerequisites.

b. Student will be allowed to register in a maximum of three theory courses during the Short Term.

c. Graduating students may register for Short Term examinations after finalization of result of Term 2 final examination.

d. A certain fee for each credit hour to be registered to be borne by the students who enroll during Short Term.

3.26. Minimum Earned Credit and GPA Requirement for Obtaining Degree

Minimum credit hour requirements for the award of bachelor's degree in engineering (BSc. Engg) and architecture (B. Arch.) will be decided by the respective department (BUGS). However, at least 157 credit hours for engineering and 189 credit hours for architecture must be earned to be eligible for graduation, and this must include the specified core courses. The minimum GPA requirement for obtaining a Bachelor's degree in engineering and architecture is 2.20.

A student may take additional courses with the consent of his/her Adviser in order to raise GPA, but he/she may take a maximum of 15 such additional credits in engineering and 18 such additional credits in architecture beyond respective credit-hour requirements for Bachelor's degree during his/her entire period of study.

3.27. Application for Graduation and Award of Degree

A student who has fulfilled all the academic requirements for Bachelor's degree will have to apply to the Controller of Examinations through his/her Adviser for graduation. Provisional Degree will be awarded by BUP on completion of credit and GPA requirements.

3.28. Time Limits for Completion of Bachelor's Degree

A student must complete his studies within a maximum period of six years for engineering and seven years for architecture.

3.29. Attendance, Conduct and Discipline

MIST has strict rules regarding the issues of attendance in class and discipline.

- 3.29.1. <u>Attendance</u>. All students are expected to attend classes regularly. The university believes that attendance is necessary for effective learning. The first responsibility of a student is to attend classes regularly and one is required to attend the classes as per MIST rules.
- 3.29.2. <u>Conduct and Discipline</u>. During their stay in MIST all students are required to abide by the existing rules, regulations and code of conduct. Students are strictly forbidden to form or be members of student organization or political party, club, society etc., other than those set up by MIST authority in order to enhance student's physical, intellectual, moral and ethical development. Zero tolerance in regards of sexual abuse and harassment in any forms and drug abuse and addiction are strictly observed in the campus.

3.30. Teacher-Student Interaction

The academic system in MIST encourages students to come in close contact with the teachers. For promotion of high level of teacher-student's interaction, a course coordinator (CC) is assigned to each course. Students are free to discuss with CC about all academic matters. Students are also encouraged to meet other teachers any time for help and guidance for

academic matters. Heads of the departments, Director of Administration, Director of Students Welfare (DSW), Dean and Commandant address the students at some intervals. More so, monthly Commandant's Parade is organized in MIST where all faculty members, staff and students are formed up, thereby increasing teacher-student interaction.

3.31. Absence during a Term

A student should not be absent from quizzes, tests, etc. during the term. Such absence will naturally lead to reduction in points/marks, which count towards the final grade. Absence in the Term Final Examination will result in an F grade in the corresponding course. A student who has been absent for short periods, up to a maximum of three weeks due to illness, should approach the course teacher(s) or the course coordinator(s) for make-up quizzes or assignments immediately upon return to classes. Such request has to be supported by medical certificate from competent authority (e.g. CMH/MIST Medical Officer).

3.32. Recognition of Performance

As recognition of performance and ensure continued studies MIST awards medals, scholarships and stipends will be given as per existing rules and practices.

3.33. Types of Different Examination

Following different types of final Examinations will be conducted in MIST to evaluate the students of Undergraduate Programs:

a. <u>**Term Final Examination:**</u> At the end of each normal term (after 22wk or so), Term Final Examination will be held. Students will appear in the Term Final Examination for all the theory courses they have taken in the Term.

b. <u>Short Term Examination</u>: Short Term may be conducted after one week completion of Term 2 final examination. Students will be allowed to take maximum three theoretical courses in the Short Term. Examination will be conducted at the end of Short Term (6th week class). However, Head of concerned department with the approval of Commandant may decide to take Supplementary examination instead of Short Term. No Laboratory/Sessional Courses can be taken in short term.

c. <u>Supplementary Examination</u>: It will take place once in a year, after each term-I final break. It should be completed within first 3 weeks of a new term. Students will be allowed to appear this examination for maximum two subjects at a time. Graduating students will be allowed to appear maximum three subjects during supplementary examination in their last Term. However, Head of the concerned department with the approval of Commandant may decide to take another Supplementary Examination instead of Short Term. In that case, a student will be allowed to take maximum three failed courses or improvement courses in the particular Supplementary Examination. This examination will be conducted in the previous week of the beginning of Term I. Highest achieved grade for all courses of Supplementary Examination will be B+.

d. <u>Improvement Examination</u>: It will be taken during supplementary and short term examination. Questions will be same as the question of the regular examination of that Short Term Final Examination (if any). Student can take maximum three subjects at a time and maximum 6 subjects in the whole academic duration. If a student obtains a grade lower than 'B+' in a course, he/she will be allowed to repeat the course only once for grade improvement. However, he/she will not be eligible to get a grade better then 'B+' for an improvement course. Among the previous result and improvement

examination result, best one will be considered as final result for an individual student. However, performance of all examination i,e previous to improvement examination, shall be reflected in the transcript.

e. <u>Self-Study Course Examination</u>: Only graduating students (level-4) will be allowed to appear at Self Study course examination. It will be taken with Term Final Examination. No regular class will be arranged for this, but teachers will be assigned for supervising and guiding the students for study, conducting class test/quiz and regular assessment for 30% marks. Maximum two theory courses may be taken as self-study course by a student. Highest achieved grade for these courses will be B+. In that case a student will be allowed to take maximum 24 credit instead of 15 in the last Term of his/her graduation.

3.34. <u>Rules of Different Examinations</u>

3.34.1. **Term Final Examination.** Following rules to be followed:

a. Registration to be completed before commencement of the class. A student has to register his desired courses paying registration, examination fee and other related fees.

b. Late registration will be allowed without penalty within first one week of the term.

c. Within 1st two weeks of a term a student can Add/Drop course/courses. To add a course, in the 3rd week, one has to register the course by paying additional fees. To drop a course, one has to apply within three weeks and paid fees will be adjusted/ refunded. If anyone wants to drop a course after three weeks and within 4 weeks, that will be permitted but paid fees will not be refunded in that case.

d. Registrar office will finalize registration of all courses within 7 (seven) weeks, issue registration slip and that will be followed by issuing Admit Card.

e. Term Final Examination to be conducted in the 18-20th week of the term as per approved Academic Calendar.

3.34.2. **Short Term Examination.** Following rules to be followed:

a. Short Term for period of 6 weeks may be offered by a department after one week of completion of Term II Final Examination.

b. Short Term Final Examination is to be conducted on 7th week of Short Term.

c. Only repeat course can be offered, not any fresh course.

d. Classes will be arranged for the students who register a failed course in the Short Term.

e. After 6 (six) weeks of class, in the 7th week short Term Examination will be held. Academic calendar for this Short Term will be declared by the Department during the Mid-Term break of Term-II.

f. One student can take only three (failed/improvement) courses at a time in the Short Term.

g. Students will have to complete registration of course for Short Term by paying all the fees, before starting of the Term-II final Exam.

h. Graduating students may register for Short Term examinations after finalization of result of T 2 final examination.

j. Maximum grading will be 'B+'.

k. Question Setting, Moderation, Result Publication will be done following the same rules of Term Final Exam as per Exam Policy. Separate Tabulation sheet will be made for this examination.

1. However, Head of concerned department with the approval of Commandant may decide to take Supplementary Examination instead of Short Term. Students will be allowed to take maximum three failed courses/improvement courses in that supplementary examination.

3.34.3. Supplementary Examination.

Following rules to be followed:

a. After the final break of every Term-I, Supplementary Examination will be held (once in a year).

b. Examination will be taken on 70% marks like Term Final examination. Remaining 30% marks on continuous assessment earned previously in that particular course will be counted. If a student fails in a course more than once in regular terms, then best one of all continuous assessment marks will be counted.

c. A student will be allowed to take maximum two courses at a time for each supplementary examination, but in the graduating Term one student can take maximum three courses if required.

d. Highest grade of supplementary examination will be 'B+'.

e. Registration for supplementary courses to be done during the mid-term break of Term 1, paying the required fees.

f. Examination will be completed after Term I End break within three weeks of Term II.

g. If any student fails in a course, he can clear the course retaking it 2nd time or, he can clear the examination appearing at the supplementary examination as well. But anyone fails twice in a course consecutively, he has to take approval of Academic Council of MIST for appearing third/last time in a course and need to pay extra financial penalty.

h. If anyone fails in the sessional course, that course cannot be cleared in the supplementary examination.

j. Question setting, Moderation, Result Publication will be done following the same rules of Term Final Examination as per Examination Policy.

k. However, Head of the concerned department with the approval of Commandant may decide to take another Supplementary Examination instead of Short Term. In that case, a student will be allowed to take maximum three failed courses or improvement

courses in that particular Supplementary Examination. This examination will be conducted in the previous week of the beginning of Term 1. Registration of that Supplementary Examination should be completed during registration of Short Term course.

3.34.4. **Improvement Examination.** Following rules to be followed:

a. Any student gets a grading below 'B+' and desires to improve that course, he will be allowed to appear the improvement examination for that particular course.

b. Highest grade of Improvement examination will be 'B+'.

c. One student is allowed to appear at Improvement exam in 6 (six) courses in his whole graduation period taking maximum three courses at a time.

d. For Improvement examination, registration is to be done before Term 2 Final Examination with the Short Term Courses or, during the registration of Supplementary Courses by paying all the fees.

e. Improvement examination to be taken during the supplementary and short term examinations.

f. Choice of Improvement course is restricted within the offered courses of that Short Term by the Departments and in two courses at a time.

g. Question Setting, Moderation and Result Publication to be done with courses of regular Term Final Examination.

3.34.5. <u>Self-Study Course and Examination</u>. Following Rules to be followed:

a. An irregular student for completion of his graduation, can take maximum two repeat courses as self-study course in the graduating Term if he desires and is accepted by department.

b. One student can take maximum 24 credit hours course in the graduating Term to complete his graduation.

c. Registration for self-study course by paying all fees, must be completed with other course of regular Term.

d. To run the self-study course, concerned Department will assign one teacher each for every self-study course offered. No regular theory class will be held, but that assigned teacher will take necessary class Tests, Quiz Test and give attendance and observation marks to give 30% marks at the end of the Term. For remaining 70% marks written examination will be taken with the Term Final Examination.

e. Assigned teacher for self-study examination will be responsible for setting questions of 70% marks and other examination formalities.

f. Question Setting, Moderation, and Result Publication to be done with courses of Term Final Examination.

g. Grading of Self Study course and examination will be maximum 'B+'.

3.35. Irregular Graduation

If any graduating student clears his/her failed course in Term-1 and his graduation requirements are fulfilled, his graduation will be effective from the result publication date of Term-1 and that student will be allowed to apply for provisional certificate.

CHAPTER 4

<u>COURSE REQUIREMENTS FOR UNDERGRADUATE</u> <u>COMPUTER SCIENCE AND ENGINEERING STUDENTS</u>

Undergraduate students of the Department of Computer Science and Engineering (CSE) have to follow a particular course schedule, the term-wise distributions of which are given below:

LEVEL-1 TERM-I

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite	Page
			Theory	Sessional		-	No
1	CSE-100	Introduction to Computer Systems	-	3.00	1.50		
		Sessional					
2	EECE-163	Electrical Circuit Analysis	3.00	-	3.00		
3	EECE-164	Electrical Circuit Analysis Sessional	-	3.00	1.50		
4	ME-181	Basic Mechanical Engineering	2.00	-	2.00		
5	MATH-	Mathematics-I (Differential Calculus	3.00	-	3.00		
	141	and Integral Calculus)					
6	PHY-103	Physics	3.00	-	3.00		
7	PHY-104	Physics Sessional	-	1.50	0.75		
8	HUM-101	English	2.00	-	2.00		
9	Shop-140	Workshop Practice Sessional	-	1.50	0.75		
	Total		13.00	9.00	17.50		

LEVEL-1 TERM-II

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite	Page
			Theory	Sessional		-	No
1	CSE-101	Discrete Mathematics	3.00	-	3.00		
2	CSE-105	Structured Programming Language	3.00	-	3.00	CSE-100	
3	CSE-106	Structured Programming Language	-	3.00	1.50		
		Sessional					
4	EECE-169	Electronic Devices and Circuits	3.00	-	3.00	EECE-163	
5	EECE-170	Electronic Devices and Circuits	-	3.00	1.50		
		Sessional					
6	CE-150	Engineering Drawing & CAD	-	3.00	1.50		
		Sessional					
7	CHEM-101	Chemistry	3.00	-	3.00		
8	MATH-	Mathematics-II (Ordinary and Partial	3.00	-	3.00		
	143	Differential Equations and Coordinate					
		Geometry)					
	Total		15.00	9.00	19.50		

LEVEL-2 TERM-I

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite	Page
			Theory	Sessional			No
1	CSE-201	Digital Logic Design	3.00	-	3.00		
2	CSE-202	Digital Logic Design Sessional	-	3.00	1.50		
3	CSE-203	Data Structures	3.00	-	3.00	CSE-105	
4	CSE-204	Data Structures Sessional	-	3.00	1.50		
5	CSE-205	Object Oriented Programming	3.00	-	3.00	CSE-105	
		Language					
6	CSE-206	Object Oriented Programming	-	3.00	1.50		
		Language Sessional					
7	EECE-269	Electrical Drives and Instrumentation	3.00	-	3.00	EECE-169	
8	EECE-270	Electrical Drives and Instrumentation	-	1.50	0.75		
		Sessional					
9	MATH-	Mathematics-III (Vector Analysis,	3.00	-	3.00		
	245	Matrices and Fourier Analysis)					
	Total		15.00	10.50	20.25		

LEVEL-2 TERM-II

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite	Page
			Theory	Sessional		-	No
1	CSE-210	Assembly Language Programming	-	3.00	1.50		
		Sessional					
2	CSE-211	Digital Electronics and Pulse	3.00	-	3.00	EECE-169	
		Technique					
3	CSE-212	Digital Electronics and Pulse	-	1.50	0.75		
		Technique Sessional					
4	CSE-213	Computer Architecture	3.00	-	3.00	CSE-201	
5	CSE-215	Algorithms	3.00	-	3.00	CSE-101,	
						CSE-203	
6	CSE-216	Algorithms Sessional	-	3.00	1.50		
7	CSE-217	Theory of Computation	3.00	-	3.00		
8	CSE-220	Object Oriented Programming	-	1.50	0.75		
		language Sessional-II					
9	MATH-	Mathematics-IV (Complex Variable	3.00	-	3.00		
	247	and Laplace Transform)					
10	HUM-215	Engineering Ethics	2.00	-	2.00		
	Total		17.00	9.00	21.50		

Rest of the chapter is different for batch CSE-16 and CSE-17.

APPLICABLE FOR CSE-17

CSE-17 has already completed up to Level-2, Term-II on the approved syllabus applicable for CSE - 15, 16 & 17 as on December 2018. From Level-3, Term-I onwards they will follow the rest of the syllabus according to the following outline.

LEVEL-3 TERM-I

	Course No	Course Title	Hours/Week		Credits	Pre-requisite
			Theory	Sessional		
1	CSE-301	Database Management Systems	3.00	-	3.00	
2	CSE-302	Database Management Systems Sessional	-	3.00	1.50	
3	CSE-303	Compiler	3.00	-	3.00	CSE-217
4	CSE-304	Compiler Sessional	-	1.50	0.75	
5	CSE-305	Microprocessors and Micro-controller	3.00	-	3.00	CSE-201
6	CSE-306	Microprocessors and Micro-controller Sessional	-	1.50	0.75	
7	CSE-307	Operating System	3.00	-	3.00	
8	CSE-308	Operating System Sessional	-	1.50	0.75	
9	CSE-309	Computer Network	3.00	-	3.00	
10	CSE-310	Computer Network Sessional	-	3.00	1.50	
	Total		15.00	10.50	20.25	

LEVEL-3 TERM-II

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite
			Theory	Sessional		
1	CSE-311	Numerical Analysis	3.00	-	3.00	
		Mathematical Analysis for				
2	CSE-313	Computer Science	3.00	-	3.00	
3	CSE-315	Digital System Design	3.00	-	3.00	CSE-305
		Digital System Design				
4	CSE-316	Sessional	-	1.50	0.75	
5	CSE-317	Data Communication	3.00	-	3.00	
6	CSE-318	Data Communication Sessional	-	1.50	0.75	
7	CSE-319	Software Engineering	3.00	-	3.00	
		Intermeted Design				CSE 105, CSE 203, CSE
8	CSE-360	Integrated Design Project/Capstone Project 1		3.00	1.50	215, CSE 205 and their
0	CSE-300	(IDP –I)	-	5.00	1.50	corresponding sessional,
		(IDF - I)				CSE 220.*
9	HUM-315	Engineering Economics	2.00	-	2.00	
10	HUM-312	English Sessional	-	3.00	1.50	
	Total		17.00	9.00	21.50	

*Note: In respect of prerequisite course(s) for taking IDP-1, HOD may allow waiver of maximum two courses.

*LEVEL-3 INDUSTRIAL TRAINING

Course No	Course Title	Hours/Week		Credits	Pre- requisite
		Theory	Sessional		
CSE-350	Industrial Training	-	4 Weeks	1.00	

*Note: This course is mandatory. Evaluation report from industry is to be submitted at the end of the training and accordingly to be incorporated in the tabulation sheet.

LEVEL-4 TERM-I

	Course No	Course Title	Hours/Week		Credits	Pre-requisite
			Theory	Sessional		
1	CSE-400	Thesis	-	3.00	1.50	
2	CSE-401	System Analysis, Design and Development	3.00	-	3.00	
	CSE-402	System Analysis, Design and				
3		Development Sessional	-	1.50	0.75	
4	CSE-403	Artificial Intelligence	3.00	-	3.00	
5	CSE-404	Artificial Intelligence Sessional	-	1.50	0.75	
6	CSE-405	Computer Interfacing	3.00	-	3.00	
7	HUM-415	Financial and managerial Accounting	2.00	-	2.00	
8	CSE-460	Integrated Design Project/Capstone Project 2 (IDP –II)	-	6.00	3.00	CSE-360
9	CSE-4XO	Option-I	3.00	-	3.00	
	Total		14.00	12.00	20.00	

Option-I

	Course No	Course Title	Hours/Week		Credits	Pre-requisite
1	CSE-419	Advanced Algorithms	3.00	-	3.00	
2	CSE-421	Basic Graph Theory	3.00	-	3.00	
3	CSE-423	Fault Tolerant System	3.00	-	3.00	
4	CSE-425	Basic Multimedia Theory	3.00	-	3.00	
5	CSE-427	Digital Image Processing	3.00	-	3.00	
6	CSE-429	Data and Network Security	3.00	-	3.00	
7	CSE-431	Object Oriented Software Engineering	3.00	-	3.00	
8	CSE-433	Artificial Neural Networks and Fuzzy Systems	3.00	-	3.00	
9	CSE-435	Distributed Algorithms	3.00	-	3.00	
10	CSE-437	Bioinformatics	3.00	-	3.00	
11	CSE-439	Robotics	3.00	-	3.00	
12	CSE-441	Machine Learning	3.00	-	3.00	

LEVEL-4 TERM-II

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite
			Theory	Sessional		
1	CSE-400	Thesis*	-	6.00	3.00	
2	CSE-407	Applied Statistics and Queuing Theory	3.00	-	3.00	
3	CSE-411	VLSI Design	3.00	-	3.00	
4	CSE-413	Computer Graphics	3.00	-	3.00	
5	CSE-414	Computer Graphics Sessional	-	1.50	0.75	
6	CSE-417	Engineering Management	3.00	-	3.00	
7	CSE-4XO	Option-II	3.00	-	3.00	
8	CSE-4XE	Option-II Sessional	-	1.50	0.75	
	Total		15.00	9.00	19.50	

Option-II

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite
			Theory	Sessional		
1	CSE-443	Pattern Recognition	3.00	-	3.00	
2	CSE-444	Pattern Recognition Sessional	-	1.50	0.75	
3	CSE-445	Digital Signal Processing	3.00	-	3.00	
4	CSE-446	Digital Signal Processing Sessional	-	1.50	0.75	
5	CSE- 447	Telecommunication Engineering	3.00	-	3.00	
6	CSE- 448	Telecommunication Engineering	-	1.50	0.75	
		Sessional				
7	CSE-449	Mobile and Ubiquitous Computing	3.00	-	3.00	
8	CSE-450	Mobile and Ubiquitous Computing	-	1.50	0.75	
		Sessional				
9	CSE- 451	Simulation and Modeling	3.00	-	3.00	
10	CSE- 452	Simulation and Modeling Sessional	-	1.50	0.75	
11	CSE-453	Data Ware-housing and Data Mining	3.00	-	3.00	
12	CSE-454	Data Ware-housing and Data Mining	-	1.50	0.75	
		Sessional				

Note: The courses those have been eliminated in the reviewed syllabus may be offered as deemed necessary due to failed or not registered in these courses in previous terms by any student.

Summary

Level and Term	Hours	s/Week	Credits	No of
	Theory	Sessional		Theory Courses
Level-1 Term-I	13.00	9.00	17.50	5
Level-1 Term-II	15.00	9.00	19.50	5
Level-2 Term-I	15.00	10.50	20.25	5
Level-2 Term-II	17.00	9.00	21.50	6
Level-3 Term-I	15.00	10.50	20.25	5
Level-3 Term-II	17.00	9.00	22.50	6
Level-4 Term-I	15.00	10.50	20.00	5
Level-4 Term-II	14.00	10.50	19.50	5
Grand Total	121.00	78.00	161.00	42

APPLICABLE FOR CSE-16

CSE-16 has already completed up to Level-3, Term-II on the approved syllabus applicable for CSE - 15, 16 & 17 as on December 2018. From Level-4, Term-I onwards they will follow the rest of the syllabus according to the following outline.

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite
			Theory	Sessional		_
1	CSE-400	Thesis	-	3.00	1.50	
2	CSE-401	System Analysis, Design and Development	3.00	-	3.00	
3	CSE-403	Artificial Intelligence	3.00	-	3.00	
4	CSE-404	Artificial Intelligence Sessional	-	1.50	0.75	
5	CSE-405	Computer Interfacing	3.00	-	3.00	
6	CSE-407	Applied Statistics and Queuing Theory	3.00	-	3.00	
7	CSE-460	Integrated Design Project/Capstone Project 1 (IDP –I)	-	4.50	2.25	CSE 105, CSE 106, CSE 203, CSE 204, CSE 215, CSE 216, CSE 205, CSE 206, and CSE 220.*
9	CSE-4XO	Option-I	3.00	-	3.00	
	Total		15.00	9.00	19.50	

LEVEL-4 TERM-I

*Note: In respect of prerequisite course(s) for taking IDP-1, HOD may allow waiver of maximum two courses.

Option-I

	Course No	Course Title	He	ours/Week	Credits	Pre-requisite
			Theory	Sessional		
1	CSE-419	Advanced Algorithms	3.00	-	3.00	
2	CSE-421	Basic Graph Theory	3.00	-	3.00	
3	CSE-423	Fault Tolerant System	3.00	-	3.00	
4	CSE-425	Basic Multimedia Theory	3.00	-	3.00	
5	CSE-427	Digital Image Processing	3.00	-	3.00	
6	CSE-429	Data and Network Security	3.00	-	3.00	
7	CSE-431	Object Oriented Software Engineering	3.00	-	3.00	
8	CSE-433	Artificial Neural Networks and Fuzzy Systems	3.00	-	3.00	
9	CSE-435	Distributed Algorithms	3.00	-	3.00	
10	CSE-437	Bioinformatics	3.00	-	3.00	
11	CSE-439	Robotics	3.00	-	3.00	
12	CSE-441	Machine Learning	3.00	-	3.00	

LEVEL-4 TERM-II

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite
			Theory	Sessional		
1	CSE-400	Thesis*	-	6.00	3.00	
2	CSE-411	VLSI Design	3.00	-	3.00	
3	CSE-413	Computer Graphics	3.00	-	3.00	
4	CSE-414	Computer Graphics Sessional	-	1.50	0.75	
5	HUM-415	Financial and managerial Accounting	2.00	-	2.00	
6	CSE-417	Engineering Management	3.00	-	3.00	
7	CSE-4XO	Option-II	3.00	-	3.00	
		Integrated Design Project/Capstone				
8	CSE-462	Project 2 (IDP –II)	-	3.00	1.50	CSE-460
9	CSE-4XE	Option-II Sessional	-	1.50	0.75	
	Total		14.00	12.00	20.00	

Option-II

	Course No	Course Title	Hours/	Week	Credits	Pre-requisite
			Theory	Sessional		
1	CSE-443	Pattern Recognition	3.00	-	3.00	
2	CSE-444	Pattern Recognition Sessional	-	1.50	0.75	
3	CSE-445	Digital Signal Processing	3.00	-	3.00	
4	CSE-446	Digital Signal Processing Sessional	-	1.50	0.75	
5	CSE- 447	Telecommunication Engineering	3.00	-	3.00	
6	CSE- 448	Telecommunication Engineering	-	1.50	0.75	
		Sessional				
7	CSE-449	Mobile and Ubiquitous Computing	3.00	-	3.00	
8	CSE-450	Mobile and Ubiquitous Computing	-	1.50	0.75	
		Sessional				
9	CSE- 451	Simulation and Modeling	3.00	-	3.00	
10	CSE- 452	Simulation and Modeling Sessional	-	1.50	0.75	
11	CSE-453	Data Ware-housing and Data Mining	3.00	-	3.00	
12	CSE-454	Data Ware-housing and Data Mining	-	1.50	0.75	
		Sessional				

Note: The courses those have been eliminated in the reviewed syllabus may be offered as deemed necessary due to failed or not registered in these courses in previous terms by any student.

Summary

Level and Term	Hours	s/Week	Credits	No of
	Theory	Sessional		Theory Courses
Level-1 Term-I	13.00	9.00	17.50	5
Level-1 Term-II	15.00	9.00	19.50	5
Level-2 Term-I	15.00	10.50	20.25	5
Level-2 Term-II	17.00	9.00	21.50	6
Level-3 Term-I	15.00	10.50	20.25	5
Level-3 Term-II	17.00	9.00	22.50	6
Level-4 Term-I	15.00	10.50	20.25	5
Level-4 Term-II	14.00	10.50	19.25	5
Grand Total	121.00	78.00	161.00	42

CHAPTER 5

DETAIL OUTLINE OF UNDERGRADUATE COURSES OFFERED BY THE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LEVEL-1 TERM-I

CSE-100 Introduction to Computer Systems Sessional

3 hours in a week, 1.50 Cr.

Introduction to computations; history of computing devices; Computers; Major components of a computer; Hardware: processor, memory, I/O devices; Software: Operating system, application software; Report writing and Presentation; Basic architecture of a computer; Basic Information Technology; Number system: binary, octal, hexadecimal, binary arithmetic; Basic programming concepts; Program development stages: flow charts; Programming constructs: data types, operators, expressions, statements; Introduction to Object Oriented Programming.

Reference Book(s):

- 1. Computer Fundamentals Peter Norton.
- 2. The Complete PC Upgrade and Maintenance Guide Mark Minasi.

EECE-163 Electrical Circuit Analysis

3 hours in a week, 3.00 Cr.

Fundamental electrical concepts and measuring units; Direct current (dc): Current, voltage, resistance, power and energy; Series/Parallel Circuits; Methods of network analysis and Network Theorems; Capacitors, Inductors and introduction to magnetic circuits. Alternating current (ac): Instantaneous current, voltage and power for various combinations of R, L and C circuits; Effective current and voltage, average power; Phasor representation of sinusoidal quantities; Sinusoidal Single-Phase Circuit Analysis; Introduction to three phase circuits; Power factor and power equation (Δ and Y circuits).

Reference Book(s):

- 1. Introductory Circuit Analysis Robert L. Boylestad.
- 2. Alternating Current Circuits Russel M Kerchner and George F Corcoran.
- 3. Fundamentals of Electric Circuits Charles K Alexander, Mathew N O Sadiku.
- 4. Introduction to Electric Circuits Richard C. Dorf, James A. Svoboda.

EECE-164 Electrical Circuit Analysis Sessional

3 hours in a week, 1.50 Cr.

Laboratory works based on EECE-163

ME-181 Basic Mechanical Engineering

Sources of energy: conventional and renewable; Introduction to IC engines, Refrigeration and Air conditioning systems; Statics of particles and rigid bodies; Forces in trusses and frames; Relative motion; Kinematics of particles: Newton's Second Law of Motion; Kinematics of rigid bodies; Introduction to Robotics; Plane, rotational and spatial motion with applications to manipulators; Geometric configurations: structural elements, linkage, arms and grippers; Motion characteristics.

Reference Book(s):

- 1. A Textbook Of Thermal Engineering R S Khurmi
- 2. Introduction to Thermal Engineering- J. P. Vasandani
- 3. Refrigeration And Air Conditioning- Ahmadul Ameen

3 hours in a week, 3.00 Cr.

MATH-141 Mathematics-I (Differential Calculus and Integral Calculus)

DIFFERENTIAL CALCULUS

Limit, continuity and differentiability, successive differentiation of various types of functions, Leibnit'z theorem, Rolle's theorem, Mean Value theorem, expansion in finite and infinite forms, Lagrange's form of remainder, Cauchy's form of remainder (expansion of remainder), expansions of functions differentiation and integration, indeterminate form, partial differentiation, Euler's theorem, tangent and normal, sub tangent and subnormal in Cartesian and polar coordinates, maxima and minima of functions of single variables, curvature, asymptotes.

INTEGRAL CALCULUS

Definition of integrations, integration by the method of substitution, integration by parts, standard integrals, integration by the method of successive reduction, definite integrals, definite integral properties and its use in summing series, Walli's formula, improper integrals, Beta function and Gamma function, multiple integral and its application, area, volume of solid of revolution, area under a plane curve in Cartesian and polar coordinates, area of the region enclosed by two curves in Cartesian and polar coordinate, arc lengths of curves in Cartesian and polar coordinates.

- 1. A text Book of Differential Calculus Rahman and Bhattachrjee.
- 2. Differential Calculus Shanti Narayan.
- 3. Differential Calculus Dr. B. D. Sharma.
- 4. Differential Calculus Das and Mukhajee.
- 5. Integral Calculus Rahman and Bhattacharjee.
- 6. Integral Calculus Abu Eusuf.
- 7. Integral Calculus Das and Mukhajee.

PHY-103 Physics

Waves-Oscillations & Wave mechanics

Oscillations: Differential equation of simple harmonic oscillator, total energy and average energy, Combination of simple harmonic oscillations, spring-mass system, damped oscillation, forced oscillation, resonance, stationary wave, phase velocity, group velocity. Wave mechanics: Fundamental postulates of wave mechanics, Schroding's equation (time dependent and time independent), Operators, Uncertainty principle, energy of a free particle.

Optics and Laser

Theories of light: Interference of light, Young's double slit experiment, Fresnel's bi-prism. Interference in thin films, Newton's rings, Interferometers, Diffraction of light: Fresnel and Fraunhofer diffractions, Diffraction by single slit, diffraction by double slits, diffraction gratings, Resolving power of optical instruments, Polarization of light: production and analysis of polarized light, polarization by double refraction, Brewster's law, Malus law, Nicole prism, , optical activity and polarimeter. Laser, spontaneous and stimulated emission, Helium-Neon laser, laser applications, Fiber optics.

Structure of Matter and Electricity: Crystalline & non-crystalline solids, single crystal and polycrystalline solids, crystal system, co-ordination number, packing factor, Miller indices, defects in solids, Bragg's law, Bonds in solids, Introduction to energy band, distinction between metal, insulator and semiconductor. Electricity: Coulomb's law, electric field, Gauss' law and its application, electric potential, capacitors and capacitance, dielectrics on atomic view, dielectric and Gauss's law, Ohm's law, resistivity -an atomic view, current density and drift velocity, Ampere's law, Faraday's law; Lenz's law, self-inductance and mutual inductance.

Reference Book(s):

- 1. A Text Book of Optics Brijlal and Subramannyam
- 2. Fundamentals of optics Francis and harvey
- 3. Waves and oscillation Brijlal and Subramannyam
- 4. Physics part-I Resnick and Haliday
- 5. Physics part-II Resnick and Haliday
- 6. Fundamentals of Physcs Haliday, Resnick and Walker
- 7. Electricity & Magnetism K.K Tewari
- 8. Elementary Solid State Physics -M Ali Omar

PHY-104 Physics Sessional

3 hours in alternative week 0.75 Cr.

Laboratory works based on PHY-103

- 1. Practical Physics Dr. Giasuddin.
- 2. Practical Physics –C.L Arora.
- 3.

HUM-101 English

English Phonetics, Vocabulary, English Grammar-determiners, modifiers, affixes, root word, head word, types of verbs, different types of Clauses, Sentence construction and different types of sentences, synthesis of sentences, Grammatical Correction; Comprehension, Business Communication, Quotation and Tenders, Job Letters.

Paragraph writing, Precise writing, Amplification, Report writing, Situational writing- posters and advertisements, notice and memorandum, message writing, Communication Today; Short stories and Literary articles written by some prominent writers, Research Study, research methodology.

Reference Book(s):

1. Prose of Our Time – Ahsanul Haque, Sirajul Islam Chawdhury and M. Shamsuddoha.

Shop-140 Workshop Practice Sessional

3 hours in a week, 1.50 Cr.

Foundry: Introduction to foundry, tools and equipment; Patterns: function, pattern making; Molding: molding materials sand preparation, types of mold, procedure; Cores: types, core making materials; Metal melting and casting; Inspection of casting and casting defects.

Welding: Metal joints, riveting, grooving, soldering, welding; Welding practice: electric arc steel, aluminium; Types of electrode; Welding defects: visual, destructive and non-destructive tests of welding. Gas welding and equipment; Types of flame; Welding of different types of material; Gas welding defects; Test of gas welding.

Carpentry: Wood working tools, Wood working machine, Band Saw, Scroll Saw, Circular Saw, Jointer, Thickness Planner, Disc Sander, Wood Lathe, Types of Sawing, Common Cuts I Wood Works, Types of Joint, Defects of Timber, Natural Defects and Artificial Defects, Seasoning, Preservation, Substitute of Timber, Commercial Forms of Timber, Characteristics of Good Timber, Use of Fastening, Shop Practice, Practical Job, Planning and Estimating of a given Job.

Machine: Kinds of tools, Common bench and hand tools, Marking and layout tools, Measuring tools, Cutting tools, Bench work with job, Drilling, Sharper, Lathe and Milling Machines: Introduction, Type, size and capacity, uses and applications.

- 1. Building Materials Gurcharan Singh
- 2. Engineering Materials M. A. Aziz
- 3. Machine Shop Practice James Anderson, W. A. Chapman
- 4. Shop Theory Anderson and Tatro.

LEVEL-1 TERM-II

CSE-101 Discrete Mathematics

3 hours in a week, 3.00 Cr.

Mathematical Logic: propositional calculus and predicate calculus; Set theory: sets, relations, partial ordered sets, functions; Mathematical reasoning and proof techniques; Counting: permutations, combinations, principles of inclusion and exclusion; Discrete Probability; Recurrence relations and recursive algorithms; Growth of functions; Graph theory: graphs, paths, trees, cycles; Algebraic structures: rings and groups.

Reference Book(s):

- 1. Discrete Mathematics & Its Applications- Kenneth H Rosen
- 2. Discrete Mathematics with Applications (Elsevier, 2004) -Thomas Koshy.

CSE-105 Structured Programming Language

3 hours in a week, 3.00 Cr.

Programming concepts; Program development stages; Flow charts; Structured programming language: data types, operators, expressions, control structures; Functions and program structure: Function basics, parameter passing conventions, scope rules and storage classes, recursion; Header files; Preprocessor; Pointers and arrays, Strings, Multidimensional array; User defined data types: structures, unions, enumerations; Input and Output: standard input and output, formatted input and output, file access; Variable length argument list; Pointer and it's uses; Command line parameters; Error Handling; Graphics; Linking; Library functions.

Reference Book(s):

- 1. Teach Yourself C Herbert Schidlt
- 2. C: The Complete Reference Herbert Schildt
- 3. C Programming Language Dennis M. Ritche

CSE-106 Structured Programming Language Sessional

3 hours in a week, 1.50 Cr.

Laboratory works based on CSE-105

Electronic Devices and Circuits

Introduction to semiconductors, p-n junction diode, I-V characteristics; Diode applications: half and full wave rectifiers, clipping and clamping circuits, regulated power supply; Bipolar Junction Transistor (BJT): principle of operation, Transistor circuit configurations (CE, CB, CC), BJT biasing, BJT Transistor modeling, small-signal analysis of single and multi- stage amplifiers, frequency response of BJT amplifier.

Field Effect Transistors (FET): Principle of operation of JFET and MOSFET, Depletion and enhancement type MOSFETs, Switching circuits using FETs, CMOS, biasing of FETs, FET small signal analysis, Low and high frequency response of FETs; Operational amplifiers and its applications; Feedback and oscillators circuits; Operation, characteristics and application of SCR, TRIAC, DIAC and UJT; Introduction to IC fabrication processes.

Reference Book(s):

EECE-169

- 1. Electronic Devices and Circuit Theory -Robert L. Boylestad and Louis Nashelsky
- 2. Electronic Principles Albert P. Malvino.

EECE-170 Electronic Devices and Circuits Sessional

Laboratory works based on EECE-169

CE-150 Engineering Drawing & CAD Sessional

Introduction: Lettering, numbering and heading, instrument and their use, sectional views and isometric views of solid geometrical figures; Plan, elevation and section of multistoried buildings; Building services drawings, detailed drawing of lattice towers; Use of AutoCAD software.

CHEM-101 CHEMISTRY

Atomic structure, quantum numbers, electronic configuration, periodic table; Properties and uses of noble gases; Different types of chemical bonds and their properties: Molecular structure of compounds: Selective organic reactions; Different types of solutions and their compositions; Phase rule. Phase diagram of mono component system; Properties of dilute solution; Thermo chemistry, chemical kinetics, chemical equilibrium; ionization of water and pi concept; Electrical properties of Solution.

Reference Book(s):

1. Chemistry of Engineering Material - Mominul Haque

3 hours in a week, 1.50 Cr.

3 hours in a week, 3.00 Cr.

3 hours in a week, 1.50 Cr.

3 hours in a week, 3.00 Cr.

MATH-143 3 hours in a week, 3.00 Cr. Mathematics-II (Ordinary and Partial Differential Equations and Coordinate Geometry)

ORDINARY DIFFERENTIAL EQUATIONS:

Formulation of Differential Equations; Solution of first order differential equations by various methods, Solution of differential equation of first order but higher degrees; Solution of general linear equations of second and higher orders with constant co-efficient, Solution of Eular's Homogeneous linear differential equations.

PARTIAL DIFFERENTIAL EQUATIONS:

Introduction, Linear and non linear first order differential equations; Standard forms; linear equations of higher order; Equation of second order with variable coefficients;

COORDINATE GEOMETRY:

Transformation of coordinates, axes and its uses; Equation of conies and its reduction to standard forms; Pair of straight lines; Homogeneous equations of second degree; Angle between the pair of straight lines; Pair of lines joining the origin lo the point of intersection of two given curves, circles; System of circles; Orthogonal circles: Radical axis, radical center, properties of radical axes; Coaxial circles and limiting points: Equations of parabola, ellipse and hyperbola in cartesian and polar co-ordinates; Tangents and formals; pair of tangents; Chord of contact; Chord In terms of Its middle points; Pole and polar parametric co-ordinates; Diameters; Conjugate diameters and then- properties; Director circles and asymptotes.

Reference Book(s):

- 1. Ordinary and Partial differential Equations M. D. Raisenghania.
- 2. Differential Equations M. L. Khanna.
- 3. Differential Equations B. D. Sharma.
- 4. Differential Equations P. N. Chatterjee.
- 5. A text book on of coordinate geometry with vector analysis-Rahman and Bhattachrjee

LEVEL-2 TERM-I

CSE-201 Digital Logic Design

3 hours in a week, 3.00 Cr.

Number systems and codes; Digital logic: Boolean algebra, De-Morgan's theorems, logic gates and their truth tables, canonical forms, combinational logic circuits, minimization techniques; Arithmetic and data handling logic circuits, decoders and encoders, multiplexers and de-multiplexers; Flip-flops, race around problems; Counters; asynchronous counters, synchronous counters and their applications; Registers and basic memory unit; Synchronous and asynchronous logic design; Design of sequential

circuit: State diagram; State minimizations and assignments; Pulse mode logic; Fundamental mode design; PLA design.

Reference Book(s):

- 1. Digital Logic and Computer Design-M. Morris Manno.
- 2. Digital Computer Electronics Albert P. Malvino, Jerald A Brown

CSE-202 Digital Logic Design Sessional

3 hours in a week, 1.50 Cr.

Laboratory works based on CSE-201

CSE-203 Data Structures

3 hours in a week, 3.00 Cr.

Internal data representation; Abstract data types; Algorithm performance and elementary asymptotic analysis (Introduction to Big-O notation); Elementary data structures: array, linked list, stack, queue, tree and tree traversal, graphs and graph representation, heap, binary search tree; Sorting algorithms; Searching: linear search and binary search; Advanced data Structures: balanced binary search trees, skip list, advanced heaps; Hashing.

Reference Book(s):

- 1. Introduction to Algorithms Thomas H Cormen
- 2. Data Structures Reingold and Hansen
- 3. Data structures and algorithm Hopcroft, Ullman
- 4. Michael T. Goodrich, Roberto Tamassia, Data Structures and Algorithms in Java 5th Edition, Wiley, 2010
- 5. Classic Data Structures Debasis Samanta

CSE-204 Data Structures Sessional

Laboratory works based on CSE-203

3 hours in a week, 1.50 Cr.

CSE-205 Object Oriented Programming Language

3 hours in a week, 3.00 Cr.

Philosophy of Object Oriented Programming (OOP); Advantages of OOP over structured programming; Encapsulation, classes and objects, access specifiers, static and non-static members; Constructors, destructors and copy constructors; Array of objects, object pointers, and object references, In-line functions, friend functions, reference; Inheritance: single and multiple inheritance; Polymorphism: overloading, abstract classes, virtual functions and overriding; Exceptions; Object Oriented I/O, inserter, extractor; Template functions and classes; namespaces, overview of Standard Template Library; Multi-threaded Programming.

Reference Book(s):

- 1. Teach Yourself C++ Herbert Schildt
- 2. Turbo C/C++ Complete Reference Herbert Schildt
- 3. JAVA How to Program Deitel&Deitel
- 4. The Complete Reference Java Herbert Schildt

CSE-206 3 hours in a week, 1.50 Cr. Object Oriented Programming Language Sessional

Laboratory works based on CSE-205 (C++)

EECE-269 Electrical Drives and Instrumentation

3 hours in a week, 3.00 Cr.

Transformers: Transformation ratio equations, Losses, Ideal Transformer, Voltage regulation, Matching Transformer; Alternators: Faradays Law, Dynamo, Generated voltage equation, Voltage regulation, DC Generator; Synchronous motor and Induction motor; DC motor; Stepper motors; Thyristor and Microprocessor based speed control of motors. Instrumentation amplifiers: Differential, logarithmic and chopper amplifiers; Frequency and voltage measurements using digital techniques; Recorders and display devices; Spectrum analyzers and Logic analyzers; Data acquisition and Interfacing Io microprocessor based systems; Transducers: Types, principles and application of photovoltaic, piezoelectric, thermoelectric, variable reactance and opto-electronic transducers; Noise reduction in instrumentation.

Reference Book(s):

- 1. A Text Book of Electrical technology B.L Theraja
- 2. Electrical Machinery and Transformers Irving L. Kossow
- 3. A Course in Electrical and Electronic Measurements and Instrumentation A.K. Sawhney
- 4. Electronic Instrumentation and Measurements David A. Bell

EECE-270 3 hours in alternative week, 0.75 Cr. Electrical Drives and Instrumentation Sessional

Laboratory works based on EECE-269

MATH-245 3 hours in a week, 3.00 Cr. Mathematics-III (Vector Analysis, Matrices and Fourier Analysis)

VECTOR ANALYSIS

Scalars and vectors, equality of vectors; Addition and subtraction of vectors; Multiplication of vectors by scalars; Scalar and vector product of two vectors and their geometrical interpretation: Triple products and multiple products; Linear dependence and independence of vectors. Differentiation and integration of vectors together with elementary applications; Definition of line, surface and volume integrals; Gradient, divergence and curl of point functions, various formulae, Gauss's theorem, Stoke's theorem, Green's theorem.

MATRICES AND FOURIER ANALYSIS

a. **Matrices:** Definition of matrix; Algebra of matrices; multiplication of matrices, transpose of a matrix, inverse of matrix; rank and elementary transformations of matrices; Solution of linear equations; linear dependence and independence of vectors. quadratic forms, matrix polynomials, determination of characteristic root and vectors, null space and nullity of matrix, characteristic subspace of matrix.

b. Fourier Analysis: Real and complex form of Fourier series; Finite transform; Fourier Integral; Fourier transforms and their uses in solving boundary value problems of wave equations.

Reference Book(s):

- 1. Vector Analysis Dr. Muhammad Abdus Sattar.
- 2. Vector Analysis M. D. Raisinghania.
- 3. Martices and Linear Transformations Mohammad Iman Ali.
- 4. An Introduction to Matrices S. C. Gupta.
- 5. Matrics Frand Asyres, JR.

LEVEL-2 TERM-II

CSE-210 3 hours in a week, 1.50 Cr. Assembly Language Programming Sessional

System Architecture for Assembly language; Assembly programming basics; Assembly instruction types and their formats: Arithmetic, Logical, Transfer control and conditional processing, Stacks, branches, String processing, subroutine and parameter passing, macros, Input/Output; Interrupts; Procedures, file system and file I/O handling.

CSE-211 Digital Electronics and Pulse Technique

3 hours in a week, 3.00 Cr.

Diode Logic Gates, Transistor Switches, Transistor Gates, Open Collector and High Impedance Gates, MOS Gates; Digital Logic Families: TTL, ECL, IIL and CMOS Logic with Operation Details; Characteristics of Digital ICs: Propagation delay, Power dissipation, Figure of Merit, Fan out, and Noise immunity; Electronic Circuits for Flip Flops, Counters and Register, Memory Systems, PLAs; S/H circuits, A/D and D/A Converters with Applications; Linear Wave Shaping, Diode Wave Shaping Techniques, Comparator Circuits, Switching Circuits; Pulse Transformers, Pulse Transmission, Pulse Generation; Monostable, Bi-stable and Astable Multivibrator; Schmitt Trigger; Optically Coupled Oscillators; Blocking Oscillators and Time-base Circuit; Timing circuits; Simple voltage sweeps, linear current sweeps.

- 1. Pulse, Digital and Switching waveforms- Jacob Millman and Herbert Taub.
- 2. Microelectronics: Digital and Analog Circuits and Systems- Jacob Millman.
- 3. Operational Amplifier and Linear Integrated Circuits- Robert Coughlin

CSE-212 3 hours in alternative week, 0.75 Cr. Digital Electronics and Pulse Technique Sessional

Laboratory works based on CSE-211

CSE-213 Computer Architecture

3 hours in a week, 3.00 Cr.

Fundamentals of computer Design; Processor Design; Datapaths Design : single cycle and multi cycle implementations; Control Unit design : hardware and micro programmed; Hazards; Exceptions; Fixed Point Arithmetic; Arithmetic Logic Unit (ALU) Design; System organization; Parallel Processing; Pipeline: pipelined datapath and control, superscalar and dynamic pipelining, Pipeline structure vector supercomputers; RISC Processor; Memory organization.

Reference Book(s):

- 1. Computer Organization and Design- David A Patterson
- 2. Computer Organization and Architecture- William Stalling

3 hours in a week, 3.00 Cr.

CSE-215 Algorithms

Introduction to algorithms; Correctness proof and techniques for analysis of algorithms; Master Theorem; Methods for the design of efficient algorithms: divide and conquer, greedy method, dynamic programming; Graph algorithms: Basic search and traversal techniques, Topological sorting, Connected components, Spanning trees, Shortest paths, Flow algorithms; Lower bound theory; NP-completeness, NP-hard and NP-complete problems; Coping with Hardness: backtracking, branch and bound, approximation algorithms.

Reference Book(s):

- 1. Algorithm Design, Wiley, 2002 Michael T. Goodrich and Roberto Tamassia
- 2. Algorithms, McGraw-Hill, 2006 Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh Vazirani.
- 3. Algorithm Design, Addison-Wesley, 2005 Jon Kleinberg and Éva Tardos.
- 4. Introduction to Algorithms Thomas H Corman

CSE-216 Algorithms Sessional

3 hours in a week, 1.50 Cr.

Laboratory works based on CSE-215

CSE-217 Theory of Computation

Finite automata: deterministic finite automata, nondeterministic finite automata, equivalence and conversion of deterministic and nondeterministic finite automata, pushdown automata; Context free languages; Context free grammars; Pushdown automata; Regualar languages: regular expressions, nonregular languages, the pumping lemma; Turing Machines: basic machines, configuration, computing with Turing machines, combining Turing machines; Undecidability. **Reference Book(s):**

- 1. Introduction to the Theory of Computation. CENGAGE Learning, 3rd ed., 2012 M. Sipser.
- 2. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Longman Publishing Co., Inc., 3rd ed., 2006 J. E. Hopcroft, R. Motwani, and J. D. Ullman.
- 3. Elements of the Theory of Computation. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2nd ed., 1997 H. R. Lewis and C. H. Papadimitriou.

CSE-220 3 hours in alternative week, 0.75 Cr. Object Oriented Programming Language Sessional-II

Laboratory works based on CSE-205 (JAVA)

MATH-247 3 hours in a week, 3.00 Cr. Mathematics-IV (Complex Variable and Laplace Transform)

COMPLEX VARIABLE

Complex number system, General functions of a complex variable, Limits and continuity of a function of complex variable and related theorems, Complex function, differentiation and the Cauchy-Riemann Equations. Line integral of a complex function, Cauchy's Integral Formula, Liouville's Theorem, Taylor's and Laurent's Theorem, Singular Residues, Cauchy's Residue Theorem.

LAPLACE TRANSFORM

Definition. Laplace transforms of some elementary functions. Sufficient conditions for existence of Laplace transform. Inverse Laplace transforms. Laplace transforms of derivatives. The unit step function. Periodic function, some special theorems on Laplace transform, Partial fraction. Solutions of differential equations by Laplace transform. Evaluation of improper integral.

Reference Book(s):

- 1. Theory and Problems of Complex Variables Marray R Sprigel.
- 2. Theory and functions of Complex Variables Shanti Narayan.

HUM-215 Engineering Ethics

2 hours in a week, 2.00 Cr.

Historical and philosophical background of patents and other intellectual property, The U.S. Patent System: the Constitution, Congress, Patent Office (PTO), and courts, Analyzing and understanding judicial opinions, Legal fundamentals of patent protection for useful inventions, Design and plant patents, Legal fundamentals of copyright protection, Similarity and access, Expression vs. ideas and information, merger, Fair use of copyrighted works, Contributory copyright infringement, Critical differences between patent and copyright protection, Copyright infringement distinguished from plagiarism, Legal fundamentals of trade-secret and trademark protection, Requirements and limitations of patentability, The process of applying for a patent, Actions for patent infringement, Patent licensing, Non-competition agreements, Rights and obligations among co-inventors, co-authors, employers, and licensees.

Definition and scopes of Ethics. Different branches of ethics. Social change and the emergence of new technologies. History and development of engineering ethics. Science and technology necessity and application. Study of ethics in engineering. Applied ethics in engineering. Human qualities of an engineer. Obligation of an engineer to the clients .Attitude of an engineer to other engineers. Measures to be taken in order to improve the quality of engineering profession. Ethical expectation: Employers and employees, inter-professional relationship, Professional Organization – maintaining a commitment of ethical standards. Desired characteristics of a professional code. Institutionalization of ethical conduct. Case studies.

Reference Book(s):

- 1. Create or Perish: The Case for Inventions and Patents Robert HRines
- 2. Engineering Ethics Carles E Haris

Rest of the chapter is different for batch CSE-16 and CSE-17.

APPLICABLE FOR CSE-17

CSE-17 has already completed up to Level-2, Term-II on the approved syllabus applicable for CSE - 15, 16 & 17 as on December 2018. From Level-3, Term-I onwards they will follow the rest of the syllabus according to the following outline.

LEVEL-3 TERM-I

CSE-301

3 hours in a week, 3.00 Cr.

Database Management Systems

Pre-requisite: None

Rationale:

This course is designed to introduce the basic concepts of database, learn the foundations of database systems, focusing on basics such as the relational algebra and data model, schema normalization, query optimization, and transactions.

Objective:

- 1. Understand the basic concepts and appreciate the applications of database systems.
- 2. Know the basics of SQL and construct queries using SQL.
- 3. Be familiar with a commercial relational database system (Oracle) by writing SQL using the system.
- 4. Be familiar with the relational database theory, and be able to write relational algebra expressions for queries.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe the basic concepts and appreciate the applications of database systems.
- 2. Illustrate the basics of SQL and construct queries using SQL.
- 3. Be familiar with a commercial relational database system (Oracle) by writing SQL using the system.
- 4. Be familiar with the relational database theory and be able to write relational algebra expressions for queries.

Course Content:

Introduction of database systems; Models: Entity-Relationship model, Relational model; Relational algebra; SQL; Advanced SQL; Some applications using SQL. Integrity constraint; Relational database design; File organization and retrieval, file indexing and hashing; Transaction manager; Concurrency controller; Recovery manager; Security system; Database administration; Introduction to advanced database management systems: distributed database,

parallel database, data mining and warehousing, multimedia, object-oriented, object-relational, real-time database.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course		2	3	4	5	6	7	8	9	10	11	12
Describe the basic concepts and appreciate the applications of database systems.												
Illustrate the basics of SQL and construct queries using												
SQL.												
Be familiar with a commercial relational database												
system (Oracle) by writing SQL using the system.												
Be familiar with the relational database theory and be												
able to write relational algebra expressions for queries.												

Lecture Schedule

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2 Lec 3	Introduction of database systems	
2	Lec 4 Lec 5 Lec 6	Models: Entity-Relationship model, Relational model	Class Test 1
3	Lec 7 Lec 8 Lec 9	Relational algebra	
4	Lec 10		
5	Lec 13 Lec 14 Lec 15	Advanced SQL, Some applications using SQL	Class Test 2
6	Lec 16 Lec 17 Lec 18	Integrity constraint	Class 1 est 2
7	Lec 19 Lec 20 Lec 21	Relational database design	
8	Lec 22 Lec 23	File organization and retrieval, file	Class Test 3

Week	Lecture	Topics	Class Test
	Lec 24	indexing and hashing	
	Lec 25		
9	Lec 26	Transaction manager	
	Lec 27		
	Lec 31	Concurrency controller, Recovery	
10	Lec 32		
	Lec 33	manager	
	Lec 28		
11	Lec 29	Security system, Database administration	
Lec 30			
	Lec 34	Introduction to advanced database	
12	Lec 35	management systems: distributed	
	Lec 36	database, parallel database	Class Test 4
	Lec 37		U1233 1 C31 7
13	Lec 38	Data mining and warehousing, multimedia	
	Lec 39		
	Lec 40	Object-oriented, object-relational, real-	
14	Lec 41	time database	
	Lec 42		

Text and Ref Books:

- 1. Database System Concept, Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Fourth edition
- 2. Files and Databases- An Introduction, Peter D. Smith and G.M. Barnes, Addison-Wesley
- 3. Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke, Third edition

CSE-302

3 hours in a week, 1.50 Cr.

Database Management Systems Sessional

Pre-requisite: None

Rationale:

This course is designed to introduce the basic concepts of database, learn how to design database and gain first-hand experience through developing a real world e- commerce database application in a term project. Also, to learn the design of a database starting from the conceptual design to the implementation of database schemas and user interfaces to a database..

Objective:

- 1. To introduce the basic concepts of database.
- 2. Developing a real world database application.

3. To learn the design of a database starting from the conceptual design to the implementation of database schemas and user interfaces to a database.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate the knowledge in projects with a commercial relational database system (Oracle) and design a team-based project.
- 2. Utilize the database design principles, SQL and PL SQL.
- 3. Demonstrate the relational database theory and be able to write relational algebra expressions for queries.

Course Content:

Introduction, Oracle Installation, Authentication, Security, Table Creation, SQL, Simple Query, Data Expressions, Join, Constraints, Advanced Query (GROUP Function etc.), Subqueries, Single-row function, Numeric function, Manipulation function, Conversion function, Nesting of function, Abstract data type, Database Trigger/ Procedure, PL/SQL Packages, Indexing, View, Introduction to PL/SQL

Teaching-learning and Assessment Strategy:

Lectures, Class Performance, Project, Quiz, Viva, Lab Exam

Assessment Methods & their Weights:

Category	Marks %
Online Test – 1	25
Online Test – 2	25
Viva	10
Class Participation	10
Class Assessment	30
Total	100

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Demonstrate the knowledge in projects with a commercial relational database system (Oracle) and design a team-based project.									\checkmark			
Utilize the database design principles, SQL and PL SQL.									\checkmark			
Demonstrate the relational database theory and be able to write relational algebra expressions for queries.									\checkmark			

Lecture Schedule

Week	Lecture	Topics	Project
1	Lec 1	Introduction, Oracle Installation, Authentication, Security	Project group distribution Project assignment
2	Lec 2	Table Creation, SQL	Presentation on the project proposal with submission of a report
3	Lec 3	Simple Query, Data Expressions etc.	Submission of the E- R diagram, Schema diagram
4	Lec 4	JOIN	
5	Lec 5		Project Update - 01
6	Lec 6	Online Exam – 1	
7	Lec 7	Constraints	
8	Lec 8	Advanced Query (GROUP Function etc.), Sub-queries	
9	Lec 9	Single-row function, Numeric function, Manipulation function, Conversion function, Nesting of function, Abstract data type etc.	Project Update - 02
10	Lec 10	Online Exam – 2	
11	Lec 11	Database Trigger/ Procedure	
12	Lec 12	PL/SQL Packages, Indexing, View	
13	Lec 13	Introduction to PL/SQL	
14	Lec 14	Online Exam – 3	

Text and Ref Books:

- 1. Database System Concept, Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Fourth edition
- 2. The Complete Reference JAVA2, Herbert Schildt
- 3. Microsoft C# Professional Projects, Geetanjali Arora, B. Aiaswamy, Nitin Pandey
- 4. The Complete Reference PHP 5.2 Steven Holzner

CSE-303

3 hours in a week, 3.00 Cr.

Compiler

Pre-requisite: CSE-217

Rationale:

To teach the students the basic techniques that underlie the practice of various phases of Compiler construction.

Objective:

- 1. To introduce the theory and tools that can be employed in order to perform syntaxdirected translation of a high-level programming language into an executable code.
- 2. To understand the role of compilers in programming languages.
- 3. To understand various stages in compilation process.
- 4. To provide knowledge on designing scanners and parsers using tools.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe the role and purpose of compilers in programming languages.
- 2. Discuss the stages in compilation process.
- 3. Separate the lexical, syntactic and semantic analysis into meaningful phases for a compiler to undertake language translation and specify and analyze the lexical, syntactic and semantic structures of advanced language features.
- 4. Design scanners and parsers using tools, and build abstract syntax trees in connection with this.

Course Content:

Introduction to compiling; Basic issues; Lexical analysis and Scanning; Syntax analysis; Syntax-directed translation; Attribute Grammars and Semantic Analysis Semantic analysis; type-checking; issues with run-time environments – source language issues; Issues in the design of code generation, Intermediate code generation; Error management; Storage organization-storage allocation strategies, target machine run-time storage management; Code optimization: The principle sources of optimization, Peephole optimization, Optimization of basic blocks-Loops in flow graphs; Introduction to global data-flow analysis, Code improving transformations.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes (CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Describe the role and purpose of compilers in												
programming languages.												
Discuss the stages in compilation process.												
Separate the lexical, syntactic and semantic												
analysis into meaningful phases for a compiler												
to undertake language translation and specify												
and analyze the lexical, syntactic and semantic												
structures of advanced language features.												
Design scanners and parsers using tools, and												
build abstract syntax trees in connection with												
this.												

Lecture Schedule:

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2 Lec 3	Introduction, Language Processors, The Structure of a Compiler	
2	Lec 4 Lec 5 Lec 6	The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, Transition Diagram	
3	Lec 7 Lec 8 Lec 9	Recognition of Reserved Words and Identifiers, Architecture of a Transition- Diagram-Based Lexical Analyzer, The Lexical-Analyzer Generator Lex	Class Test 1
4	Lec 10 Lec 11 Lec 12	Top-Down Parsing, Predictive Parsing	
5	Lec 13 Lec 14 Lec 15	Designing a Predictive Parser, Left Recursion, The Role of the Parser, Representative Grammars, Syntax Error Handling, Writing a Grammar	Class Test 2
6	Lec 16 Lec 17 Lec 18	Elimination of Left Recursion, Left Factoring, Top-Down Parsing, First and Follow	
7	Lec 19 Lec 20	LL (1) Grammars, Construction of Predictive Parsing Table, Nonrecursive]

	Lec 21	Predictive Parsing, Parsers Generators	
8	Lec 22 Lec 23 Lec 24	Syntax-Directed Definitions, Inherited and Synthesized Attribute, Evaluating an SDD at the Nodes of a Parse Tree, Dependency Graph	
9	Lec 25 Lec 26 Lec 27	Ordering the Evaluation of Attributes, S- Attributed Definitions, L-Attributed Definitions, Semantic Rules with Controlled Side Effect, Applications of Syntax Directed Translation	Class Test 3
10	Lec 31 Lec 32 Lec 33	Variants of Syntax Tree, Directed Acyclic Graphs for Expressions, The Value Number Method for Constructing DAG's, Three- Address Code, Addresses and Instructions	
11	Lec 28 Lec 29 Lec 30	Quadruples, Triples, Static Single- Assignment Form, Types and Declarations,	
12	Lec 34Storage Organization, Static VS DynamicLec 35Storage Allocation, Stack Allocation ofLec 36Space, Activation Trees, Activation Records		
13	Lec 37 Lec 38 Lec 39	Issues in the Design of a Code Generator, The Target Language, Addresses in the Target Code, Static Allocation, Optimization of Basic Blocks	Class Test 4
14	Lec 40 Lec 41 Lec 42	Peephole Optimization, Optimization of basic blocks-Loops in flow graphs; Introduction to global data-flow analysis, Code improving transformations	

Text and Ref Books:

- Compilers: Principles, Techniques & Tools (2nd ed)- Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman, Pearson/Addison Wesley (2006).
- 2. Engineering A Compiler (2nd Ed)- Linda Torczon and Keith Cooper, Morgan Kaufmann Publishers Inc (2011).

CSE-304

Compiler Sessional

Pre-requisite: None

Rationale:

To implement tokenizer, arithmetic calculator and to able to write the code by using Flex and Bison.

Objective:

- 1. To learn to implement different phases of a compiler.
- 2. To learn the use of Flex and Bison tools used for designing a compiler.
- 3. To understand the different types of parsing techniques and to solve the problem.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Use the basic techniques of compiler construction and tools that can used to perform syntax-directed translation of a high-level programming language into an executable code.
- 2. Describe the working of lex and yacc compiler for debugging of programs.
- 3. Discuss the new tools and technologies used for designing a compiler.

Course Content:

Symbol Table, Tokenizer, Tokenizer Using Flex, Arithmetic Calculator using Bison, Intermediate Code Generator (Flex + Bison).

Teaching-learning and Assessment Strategy:

Lab performances, Lab Report/Assignment/Presentation, Lab Test/ Quiz. Assessment Methods & their Weights:

Category	Marks %					
Online Test – 1	25					
Online Test – 2	25					
Viva	10					
Class Participation	10					
Class Assessment	30					
Total	100					

Mapping of Course Outcomes (CO) and Program Outcomes:

		Program Outcome (PO)										
Course Outcomes (CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Use the basic techniques of compiler construction and tools that can used to perform syntax-directed translation of a high-level programming language into an executable code.						\checkmark						
Describe the working of lex and yacc compiler for debugging of programs.									\checkmark			
Discuss the new tools and technologies used for designing a compiler.											\checkmark	

Lecture Schedule:

Week	Lecture	ecture Topics								
1+2	Lab 1+2	Symbol Table								
3+4	Lab 3+4	Tokenizer								
5+6	Lab 5+6	Tokenizer Using Flex								
7+8	Lab 7+ 8	Arithmetic Calculator using Bison								
9+10	Lab 9+ 10	Intermediate Code Generator (Flex + Bison)								
11+12	Lab 11+12	Online								
13	Lab 13	Quiz								
14	Lab 14	Viva								

Text and Ref Books:

- 1. Compilers: Principles, Techniques & Tools (2nd ed)- Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman, Pearson/Addison Wesley (2006).
- 2. Engineering A Compiler (2nd Ed)- Linda Torczon and Keith Cooper, Morgan Kaufmann Publishers Inc (2011).

CSE-305

3 hours in a week, 3.00 Cr.

Microprocessors and Micro-controllers

Pre-requisite: CSE-201

Rationale:

This course introduces basics of assembly language, microprocessor architecture, and discusses different interfaces and the design of systems based on microprocessors and microcontrollers.

Objective:

- 1. To achieve knowledge on the low level language of microprocessor
- 2. To provide an understanding of microprocessor-based systems and their use in instrumentation, control and communication systems.
- 3. To Investigate microprocessor-based systems, produce software for a microprocessorbased system, interface microprocessor-based systems and understand usage of programmable logic controllers

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Understand how the high level language is converted to low level languages and how a processor executes a program line by line.
- 2. Work with basic microprocessors using assembly language.
- 3. Understand the basic method of how a microcomputer works with its associate components.
- 4. Design 8051 microcontroller based system.

Course Content:

Microprocessors and Micro-controllers: Introduction to Microprocessor and Microcontroller. Architectural overview of Microprocessor and its operation, Common instruction types, addressing modes. Intel 8086 Microprocessor : Internal architecture, register structure, programming model, addressing modes, instruction set; I/O Pin diagram and Control signals; I/O port organization and accessing; Cache Memory, TLB Structure; Memory Management in Intel 80X86 Family; segmentation and Real Mode Memory Management. Intel 80186, 80386 and 80486 segments register formats, Paged memory operation. Linear to physical address translation; Arithmetic co-processor; Interrupts and Exception in Intel 80X86 families of processors, type of Interrupts, Interrupts in real mode and protected mode, Interrupt descriptor tables, Interrupts Priorities; Input and Output : IO address spaces, Port organization, Memory mapped IO, Hand-shaking IO instruction, Keyboard-Display interface Timer handler, Microcontrollers: Architecture of 8051, memory organization, special function register, I/O ports, Special function registers.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Demonstrate how the high level language is converted to low level languages and how a processor executes a program line by line.	1											
Develop using basic microprocessors using assembly language.												
Describe the basic method of how a microcomputer works with its associate components.		\checkmark										
Develop 8051 microcontroller based system.												

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2 Lec 3	SystemArchitectureforAssemblylanguage;Assembly programming basics;AssemblyAddressing modes	
2	Lec 4 Lec 5 Lec 6	Assembly instruction types and their formats: Arithmetic, Logical, Transfer control and conditional processing,	Class Test 1
3	Lec 7 Lec 8 Lec 9	Stacks, branches, String processing, subroutine and parameter passing	
4	Lec 10 Lec 11 Lec 12	Macros, Input/output; Interrupts, Procedures, file system and file I/O handling.	
5	Lec 13 Lec 14 Lec 15	Introduction to Microprocessor and Microcontroller. Architectural overview of Microprocessor and its operation, Common instruction types, addressing modes.	Class Test 2
6	Lec 16 Lec 17 Lec 18	Intel 8086 Microprocessor : Internal architecture, register structure, programming model,	
7	Lec 19 Lec 20 Lec 21	Addressing modes, instruction set; I/O Pin diagram and Control signals; I/O port organization and accessing;	

8	Lec 22 Lec 23 Lec 24	Cache Memory, TLB Structure; Memory Management in Intel 80X86 Family; segmentation and Real Mode Memory Management.	Class Test 3
9	Lec 25 Lec 26 Lec 27	Intel 80186, 80386 and 80486 segments register formats, Paged memory operation	
10	Lec 28 Lec 29 Lec 30	Paged memory operation. Linear to physical address translation; Arithmetic co-processor;	Class Test 4
11	Lec 31 Lec 32 Lec 33	Interrupts and Exception in Intel 80X86 families of processors, type of Interrupts, Interrupts in real mode and protected mode, Interrupt descriptor tables, Interrupts Priorities;	
12	Lec 34 Lec 35 Lec 36	Interrupts Priorities; Input and Output : IO address spaces, Port organization, Memory mapped IO, Hand-shaking IO instruction,	
13	Lec 37 Lec 38 Lec 39	Keyboard-Display interface Timer handler, Microcontrollers:	Class Test 5
14	Lec 40 Lec 41 Lec 42	Architecture of 8051, memory organization, special function register,I/O ports, Special function registers.	

- 1. Assembly Language Programming and Organization of the IBM PC--Ytha Yu, Charles Marut
- 2. The Intel Microprocessors Barry B Brey
- 3. Microprocessors and Interfacing Douglas V. Hall
- 4. Microprocessors and Microcomputer- based system design -Mohamed Rafiquzzaman.
- 5. 8051 Microcontroller-Internals, Instructions, Programming& Interfacing by Subrata Ghoshal

CSE-306

Microprocessors and Micro-controllers Sessional

Pre-requisite: None

Rationale:

This course introduces basics of assembly language, microprocessor architecture, and discusses different interfaces and the design of systems based on microprocessors and microcontrollers.

Objective:

- 1. To achieve knowledge on the low level language of microprocessor
- 2. To provide an understanding of microprocessor-based systems and their use in instrumentation, control and communication systems.
- 3. To Investigate microprocessor-based systems, produce software for a microprocessorbased system, interface microprocessor-based systems and understand usage of programmable logic controllers

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Understand how the high level language is converted to low level languages and how a processor executes a program line by line.
- 2. Work with basic microprocessors using assembly language.
- 3. Understand the basic method of how a microcomputer works with its associate components.
- 4. Design 8051 microcontroller based system.
- 5. Know about different family and generation of microprocessors and microcontrollers.

Course Content:

Basic of Assembly Language - Compilation, input, output, variables, basic instructions, memory model, data segment, stack segment, code segment, Input Output Instruction. Basic Idea of MDA 8086; LED, Seven Segment display, LCD, Keyboard, Motor, Dot matrix Interface with 8086; Basic idea of ATMEGA 16 microcontroller and simulation

Teaching-learning and Assessment Strategy:

Lectures, Class Performance, Project, Quiz, Viva, Lab Exam

Assessment Methods & their Weights:

Category	Marks %
Online Test – 1	25
Online Test – 2	25
Viva	10
Class Participation	10
Class Assessment	30
Total	100

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Describe how the high level language is converted to low level languages and how a processor executes a program line by line and solve problems using to low level languages.										\checkmark		
Work with basic microprocessors using assembly language.						\checkmark						
Work on Group Project based on basic micro- controllers with presentation.								\checkmark				

Week	Lecture	Topics
1	Lec 1	Basic of Assembly Language - Compilation, input, output, variables, basic instructions, memory model, data segment, stack segment, code segment, Input Output Instruction
2	Lec 2	Online Exam
3	Lec 3	Basic idea of ATMEGA 16 microcontroller and simulation.
4	Lec 4	Project Idea
5	Lec 5	Basic Idea of MDA 8086
6	Lec 6	LED and Seven Segment display interface
7	Lec 7	Operation of DOT matrix using 8086 kit
8	Lec 8	LCD interface with 8086
9	Lec 9	Keyboard interface with 8086

10	Lec 10	Motor interface with 8086
11	Lec 11	Project Update
12	Lec 12	Viva
13	Lec 13	Final Project Submission
14	Lec 14	Quiz

- 1. Assembly Language Programming and Organization of the IBM PC--Ytha Yu, Charles Marut
- 2. The Intel Microprocessors Barry B Brey
- 3. Microprocessors and Interfacing Douglas V. Hall

CSE-307

3 hours in a week, 3.00 Cr.

Operating System

Pre-requisite: None

Rationale:

The Operating System course provides a comprehensive understanding to the modern Operating System. The course begins with the history of operating system and the review of computer hardware and concentrates on operating system concepts, system structure, process and threads, memory management, file system and related security aspects. It also deals with multiprocessor systems, virtualizations and cloud.

Objective:

- 1. Developing the basic idea about Internals and design principles of OS.
- 2. Learning the techniques for achieving protection and security in multi-level complex environment.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Classify, identify and analyse modern operating systems; concept for virtualization, cloud and multiple processor systems. Discuss and apply internal design principles of Operating System.
- 2. Understanding and analysing process, threads, memory and file management system;
- 3. Able to develop and design algorithms for deadlock and memory management.

Course Content :

OS Introduction of Operating System, Types of OS; Process: process managements, process states, job and process scheduling, CPU scheduling algorithms, process coordination, critical section problems, semaphores, Inter-Process Communication (IPC), classical IPC problems, multiprocessing and time sharing,; Memory management: swapping, memory allocation schemes, Paging and segmentation, virtual memory, page replacement strategies, working sets, demand paging; Input/output: hardware/software, disk, disk scheduling algorithms, Secondary storage management, terminals, clocks; Deadlock: resource allocation, detection, prevention, avoidance and recovery; File management; Virtualization : Types and techniques for efficient virtualization, memory and i/o virtualizations, virtual appliances, Cloud :clouds as a service, virtual machine migration, Check pointing; Multiple Processor Systems:Multiprocessor, Multicomputer, Distributed Systems, Research on Multiple Processor Systems; Operating system security and protection; case study of some operating systems.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Assessment Method	(100%)
Lab Test	40
Quiz	20
Viva	10
Class Participation	10
Report	10
Class Assessment	10

Assessment Methods & their Weights:

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	•	-		I	1	7	0	0	1	1	1
	1	2	3	4	5	6	1	8	9	0	1	2
Classify, identify and analyse modern operating systems; concept for virtualization, cloud and multiple processor												
systems.												
Understanding and analysing process, threads, memory and		\checkmark										
file management system;												
Able to develop and design algorithms for deadlock and												
memory management.			,									

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction evolution, goals and	
	Lec 2	Components of OS, types of OS	Class Test 1
	Lec 3		
2	Lec 4	Process managements, process states and	

	Lec 5	state transition process control blocks	
	Lec 5 Lec 6	state transition, process control blocks	
3	-	Tab and masses askeduling, askeduling	
3	Lec 7	Job and process scheduling, scheduling	
	Lec 8	levels, objective and criteria CPU scheduling	
	Lec 9	algorithms	
4	Lec 10	Process coordination, critical section	
	Lec 11	problems, semaphores,	
	Lec 12		
5	Lec 13	Language constructs, classical problems of	
	Lec 14	process coordination, Inter-process	
	Lec 15	communication, message and mailbox etc.	Class Test 2
6	Lec 16	Memory management memory allocation	Class 1 Cst 2
	Lec 17	schemes, Paging and segmentation, virtual	
	Lec 18	memory	
7	Lec 19	Page replacement strategies, working sets,	
	Lec 20	demand paging	
	Lec 21		
8	Lec 22	File system functions file organization	
	Lec 23	logical and physical file maps, tree structure	
	Lec 24	file systems,	
9	Lec 25	I/O programming Device management	
-	Lec 26	techniques. Interrupts processing parallel	
	Lec 27	processing.	Class Test 3
10	Lec 31	Secondary storage management, disk	
10	Lec 32	scheduling algorithms	
	Lec 33	seneduning digoritanins	
	100 00		
11	Lec 28	Space allocation, catalogs, file access control	
	Lec 29	mechanism	
	Lec 30		
12	Lec 34	Deadlock, deadlock prevention. avoidance	
	Lec 35	direction and recovery	
	Lec 36	· · · · · · · · · · · · · · · · · · ·	
13	Lec 37	Operating system security, timesharing,	
	Lec 38	Types and techniques for efficient	
	Lec 39	virtualization, memory and i/o	
		virtualizations, virtual appliances	
14	Lec 40	Clouds as a service, virtual machine	Class Test 4
17	Lec 40 Lec 41	migration, Check pointing; Multiple	
	Lec 41 Lec 42	Processor Systems: Multiprocessor,	
	Let 42	Multicomputer, Distributed Systems,	
		· · · · · · · · · · · · · · · · · · ·	
		Research on Multiple Processor Systems;	
		Operating system security and protection;	
		case study of some operating systems	

CSE-308

3 hours in alternate week, 0.75 Cr.

Operating System Sessional

Pre-requisite: None

Rationale:

Understand the basic components of a computer operating system, and the interactions among the various components on the policies for scheduling, deadlocks, memory management, synchronization, system calls, and file systems.

Objective:

- 1. To learn basic OS concepts and to be familiar with the design principles of Operating System
- 2. Developing Internal and design principles of Operating System.
- 3. Be Familiar with the boot loader, kernel and how they works

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Learn basic OS concepts and to be familiar with the design principles of Operating System.
- 2. Discuss and apply internal design principles of Operating System.
- 3. Be Familiar with the boot loader, kernel and how they works
- 4. Design a team-based project on tiny OS with a presentation.

Course Content :

Introduction of Linux Operating System, Installation of Linux in various modes, Installation of windows application programs on Linux, Installation of Linux application programs on Windows, Basic Command Line commands, Linux Kernels and Office Environments, Orientation with Shell Programing, Making own kernel, Harding Windows, Harding Linux.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Assessment Methods & their Weights:

Assessment Method	(100%)
Lab Test	40
Quiz	20
Viva	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

		Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12	
Learn basic OS concepts and to be familiar with											,		
the design principles of Operating System.													
Discuss and apply internal design principles of													
Operating System.													
Be Familiar with the boot loader, kernel and how													
they works.													
Design a team-based project on tiny OS with a													
presentation.													

Lecture Schedule:

Week	Topics							
1-2	Introduction of Linux Operating System							
	Installation of Linux in various modes							
	Installation of windows application programs on Linux							
	Installation of Linux application programs on Windows							
	Basic Command Line commands							
3-4	3-4 Playing with Linux Kernels and Office Environments							
	Assigning related Project							
5-6	Orientation with Shell Programing							
7-8	Introduction with a lightweight open source OS (For e.g., NACHOS)							
	Implementation of Process & Thread Synchronization							
9-10	Evaluation on Synchronization							
	Implementation of Memory management							
11-12	Evaluation on Memory management							
13-14	Quiz & Final Report Submission							

Text and Ref Books:

1. Modern Operating Systems (4th ed) - Andrew S. Tanenbaum; Prentice Hall (2014)

2. UNIX Shell Programming - Kanetkar

CSE-309

3 hours in a week, 3.00 Cr.

Computer Network

Pre-requisite: None

Rationale:

Resource sharing, high Reliability, increase in system performance, and security are the main objective.

Objective:

- 1. Understand the organization of computer networks, factors influencing computer network development and the reasons for having variety of different types of networks.
- 2. Apply knowledge of different techniques of error detection and correction to detect and solve error bit during data transmission.
- 3. Design a network routing for IP networks.
- 4. Demonstrate proper placement of different layers of ISO model and illuminate its function.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss the understanding of the organization of computer networks, factors influencing computer network development and the reasons for having variety of different types of networks.
- 2. Illustrate knowledge of different techniques of error detection and correction to detect and solve error bit during data transmission.
- 3. Design network routing for IP networks.
- 4. Demonstrate proper placement of different layers of ISO model and illuminate its function.

Course Content:

Protocol hierarchies; Data link control: HLDC; DLL in Internet; DLL of ATM; LAN Protocols: Standards IEEE 802; Hubs, Bridges, and Switches, FDDI, Fast Ethernet; Routing Algorithm; Internetworking, WAN; Fragmentation; Firewalls; IPV4, IPV6, ARP, RARP, Mobile IP, Network layer of ATM; Transport Protocols; Transmission Control Protocol: Connection Management, Transmission Policy, Congestion Control, Timer Management; UDP; AAL of ATM; wireless networks, mobile computing, and high speed networks; Gigabit Ethernet; Domain Name System: Name servers; Email and Its privacy; SNMP; HTTP; World Wide Web; Network security: Cryptography, DES, IDEA, public key algorithm; Authentication; Digital signatures, Principles of Reliable Data Transfer, FTP.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the Course		Program Outcome (PO)											
		2	3	4	5	6	7	8	9	10	11	12	
Discuss the understanding of the organization of computer networks, factors influencing computer network development and the reasons for having variety of different types of networks.	v												

Illustrate knowledge of different techniques of error detection and correction to detect and solve error bit during data transmission.	٧						
Design network routing for IP networks.		٧					
Demonstrate proper placement of different layers of ISO model and illuminate its function.	٧						

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction	
	Lec 2	What Is the Internet, Network Edge,	
	Lec 3	Network Core, Delay, Loss, and	
		Throughput in Packet-Switched Networks,	
		Protocol Layers and Their Service Models,	
		Networks Under Attack, History of	
		Computer Networking and the Internet	
2	Lec 4	Application Layer	
	Lec 5	Principles of Network Applications, The	Class Test 1
	Lec 6	Web and HTTP, File Transfer	
3	Lec 7	Electronic Mail in the Internet, DNS, Peer-	
	Lec 8	to-Peer Applications, Socket Programming	
	Lec 9		
4	Lec 10	Turner and Larray	
	Lec 11	Transport Layer	
	Lec 12	Process to Process Delivery,	
5	Lec 13		
	Lec 14	UDP, TCP, SCTP	
	Lec 15		
6	Lec 16	Network Layer	Class Test 2
	Lec 17	IPv4 Addresses, Internet Protocol,	
	Lec 18	Internetworking, IPv4	
7	Lec 19		
	Lec 20	IPv6 Address, Transition from IPv4 to	
	Lec 21	IPv6, Address Mapping, ICMP	
8	Lec 22	Data Link Layer	
	Lec 23	Services Provided by the Link Layer,	
	Lec 24	Link Layer Implementation, Error-	
		Detection and Correction, Parity Checks,	
		Check summing Methods, CRC	
9	Lec 25	Multiple Access Links and Protocols,	
-	Lec 26	Switched Local Area Network, Link	
	Lec 27	Virtualization, Data Center Networking,	Class Test 3
	-	Retrospective	
10	Lec 31	Wireless and Mobile Networks	
	Lec 32	Wireless Links and Network	
	Lec 33	Characteristics, Cellular Internet Access,	
		Mobility Management: Principles, Mobile	

		IP, Managing Mobility in Cellular Networks, Wireless and Mobility: Impact	
		on Higher-Layer Protocols	
11	Lec 28	Network Security	
	Lec 29	Cryptography, Message Integrity and	
	Lec 30	Digital Signatures, End-Point	
		Authentication, Securing E-Mail, Securing	
		TCP Connections: SSL, Network-Layer	
		Security: IPsec and Virtual Private	
		Networks, Firewalls and Intrusion	
		Detection Systems	
12	Lec 34	Network Layer	
	Lec 35	IGMP, ICMPV6, Delivering, Forwarding	
	Lec 36	and Routing	
		Delivery, Forwarding	
13	Lec 37	Unicast Routing Protocols	Class Test 4
	Lec 38	Multicast Routing Protocols	
	Lec 39	Wutteast Routing 1 lotocols	
14	Lec 40	Multimedia	
	Lec 41	Digitizing Audio And Video, Audio And	
	Lec 42	Video Compression, Streaming Stored	
		Audio/Video, Streaming Live Audioivideo,	
		Real-Time Interactive Audioivideo, RTP,	
		RTCP, Voice Over IP	
		Review Class	

- 1. Computer Networks Andrew S. Tanenbaum
- 2. Computer Networks: Protocols, Standards, and Interfaces Uyless Black Internetworking with TCP/IP: Principles, Protocols, Architecture D. E. Comer
- 3. TCP/IP Illustrated Vol. I W. R. Stevens
- 4. Complete Networking : A Top Down Approach Featuring the Internet James F. Kurose, Keith W. Ross

CSE-310

3 hours in a week, 1.50 Cr.

Computer Network Sessional

Pre-requisite: None

Rationale:

Apply, discuss, analyze, simulate, and present architectures, applications of different types of computer networks to facilitate communication and resource-sharing among a wide range of users.

Objective:

1. Understand, analyze, simulate, and present architectures of different types of computer networks &

develop, and present contemporary and new protocols of computer networks.

- 2. Understand, Design, analyze different types of Network Layers.
- 3. Identify applications of computer networks with determining suitable alternatives of the networks.
- 4. Achieve a basic idea about Cisco Packet tracer, WireShark, Ns2

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss, analyze, simulate, and present architectures of different types of computer networks; develop, and present contemporary and new protocols of computer networks.
- 2. Describe, design, analyze different types of network layers.
- 3. Identify applications of computer networks with determining suitable alternatives of the networks.
- 4. Apply the basic functionalities of Cisco Packet Tracer, WireShark, Ns2.

Course Content:

IP Addressing, Basic Configuration of Cisco Packet Tracer, Socket Programing, Basic Network Configuration (Static) Data, Variable Length Subnet Mask (VLSM), RIP, EIGRP, Dynamic Host Configuration Protocol (DHCP), Open Shortest Path First (OSPF), Physical Network Interface Connection/ Router & Switch Configuration, Access Control List (ACL), VLAN, InterVLAN, VTP, Information Gathering using Wireshark, Introduction to NS2.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Assessment Methods & their Weights:

Category	Marks %
Online Test – 1	25
Online Test – 2	25
Viva	10
Class Participation	10
Class Assessment	30
Total	100

Mapping of Course Outcomes (CO) and Program Outcomes:

		Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12	
Discuss, analyze, simulate, and present													
architectures of different types of computer													
networks; develop, and present contemporary									N				
and new protocols of computer networks.													
Describe, design and analyze different types													
of network layers.											N		
Identify applications of computer networks													
with determining suitable alternatives of the													
networks.													
Apply the basic functionalities of Cisco											2		
Packet Tracer, WireShark, Ns2.											Ν		

Lecture Schedule

Week	Topics
1	IP Addressing, Basic Configuration of Cisco Packet Tracer
2	Socket Programing
3	Basic Network Configuration (Static) Data
4	Variable Length Subnet Mask (VLSM)
5	RIP, EIGRP
6	Dynamic Host Configuration Protocol (DHCP), Open Shortest Path First
	(OSPF)
7	Online-1
8	Physical Network Interface Connection/ Router & Switch Configuration
9	Access Control List (ACL)
10	VLAN, InterVLAN, VTP
11	Information Gathering using Wireshark
12	Introduction to NS2
13	Online-2
14	Quiz

Text and Ref Books:

- 1. Computer Networks Andrew S. Tanenbaum
- 2. Computer Networks: Protocols, Standards, and Interfaces Uyless Black Internetworking with TCP/IP: Principles, Protocols, Architecture D. E. Comer
- 3. TCP/IP Illustrated Vol. I W. R. Stevens
- 4. Complete Networking : A Top Down Approach Featuring the Internet James F. Kurose, Keith W. Ross

LEVEL-3 TERM-II

CSE-311 Numerical Analysis

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

In numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm

Objective:

- 1. To calculate the solutions of nonlinear equations in one variable
- 2. To analyse the interpolation and approximation
- 3. To analyse numerical differentiation and integration
- 4. To understand direct methods for solving linear systems, numerical solution of ordinary differential equations.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate a familiarity with major algorithms and data structures.
- 2. Write rigorous correctness proof and analyze the running time of the advanced algorithms and data structures for some classic problems;
- 3. Apply important algorithmic design paradigms and methods of analysis.
- 4. Synthesize efficient algorithms and data structures in common engineering design situations.

Course Content:

Introduction; Mathematical Model. Sources of errors, their propagation and the idea of conditioning. Solution of algebraic and transcendental equations: Iterative methods for root finding. Rates of convergence. False Position method, Newton-Rhapson method; Solution of simultaneous linear equations: Gauss-Jordan Elimination method, Choleski's process; Dolittle and Crout factorization; Interpolation: diagonal and horizontal difference, differences of a polynomial, Newton's formula for forward and backward interpolation, Spline interpolation; Integration: Gauss quadrature formula, Trapezoidal rule, Simpson's rules, Weddle's rule; Solution of ordinary differential equations: Euler's method, Picard's method, Milne's method, Taylor's series method, Runge-Kutta method; Least squares

Teaching-learning and Assessment Strategy: Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the Course		Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12	
Demonstrate a familiarity with major algorithms and data structures.		\checkmark											
Write rigorous correctness proof and analyze the running time of the advanced algorithms and data structures for some classic problems													
Apply important algorithmic design paradigms and methods of analysis.					\checkmark								
Synthesize efficient algorithms and data structures in common engineering design situations.													

Week	Lecture	Topics
	Lec 1	
1	Lec 2	Introduction; Mathematical Models
	Lec 3	
	Lec 4	
2	Lec 5	Sources of errors, their propagation and the idea of conditioning
	Lec 6	
	Lec 7	
3	Lec 8	Solution of algebraic and transcendental equations
	Lec 9	
	Lec 10	
4	Lec 11	Iterative methods for root finding
	Lec 12	
	Lec 13	
5	Lec 14	Rates of convergence, False Position method
	Lec 15	
	Lec 16	
6	Lec 17	Newton-Rhapson method
	Lec 18	
	Lec 19	Solution of simultaneous linear equations: Gauss-Jordan Elimination
7	Lec 20	method
	Lec 21	

8	Lec 22 Lec 23 Lec 24	Choleski's process; Dolittle and Crout factorization
9	Lec 25 Lec 26 Lec 27	Interpolation: diagonal and horizontal difference, differences of a polynomial
10	Lec 31 Lec 32 Lec 33	Newton's formula for forward and backward interpolation, Spline interpolation
11	Lec 28 Lec 29 Lec 30	Integration: Gauss quadrature formula
12	Lec 34 Lec 35 Lec 36	Trapezoidal rule, Simpson's rules, Weddle's rule
13	Lec 37 Lec 38 Lec 39	Solution of ordinary differential equations: Euler's method, Picard's method, Milne's method
14	Lec 40 Lec 41 Lec 42	Taylor's series method, Runge-Kutta method; Least squares

- 1. Data Structures Reingold and Hansen
- 2. Data structures and algorithm Hopcroft, Ullman
- 3. Data Structures and Algorithms in Java Michael T. Goodrich, Roberto Tamassia
- 4. Introduction to Algorithms T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, MIT Press

CSE-313

3 hours in a week, 3.00 Cr.

Mathematical Analysis for Computer Science

Pre-requisite: None

Rationale:

To achieve knowledge on probability, gain Knowledge on computation of probability with its practical and theoretical application in studying computer science.

Objective:

- 1. Understands the concept of random variable, moment generating function and their properties.
- 2. Learn Standard distributions in discrete and continuous cases.
- 3. Learn basics of probability, Bayes' theorem, stochastic process and Queuing theory.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Learn basics of probability, Bayes' theorem.
- 2. Describe the understanding of the concept of random variable, moment generating function and their properties.
- 3. Apply Standard distributions in discrete and continuous cases.
- 4. Apply stochastic process and Queuing theory.

Course Content:

Recurrent problems; Manipulation of sums; Number theory; Special numbers; generating functions.

Probability: Probability Models, Sample Space, Events, Algebra of Events, Probability Axioms, Conditional Probability, Multiplication Rule, Total Probability, Bayes' rule.

Random Variables: Discrete, Continuous and Mixed Random Variables, Probability Mass, Distribution and Cumulative Distribution Functions.

Probability Distributions: Discrete probability distributions -Binomial, Poisson, Negative Binominal Distributions and Their Properties Continuous probability distributions -Uniform, Normal, Exponential Distributions and their Properties. Stochastic process; Markov chains (discrete parameter, continuous parameter, birth-death process); Queuing models (birth-death model, Monrovian model), open and closed queuing network; Application of queuing models.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Learn basics of probability, Bayes' theorem.	v											
Describe the understanding of the concept of random variable, moment generating function and their properties.	٧											
Apply Standard distributions in discrete and continuous cases.	٧											
Apply stochastic process and Queuing theory.	٧											

Week	Lecture	Topics	Class Test
1	Lec 1	Recurrence Problems: The Tower of	
	Lec 2	Hanoi	
	Lec 3	Lines in The Plane	
		The Josephus Problem	

2	Lec 4	Sums: Manipulation of sums, Multiple	Class Test 1
-	Lec 5	Sums, General Methods, Finite and Infinite	
	Lec 6	Calculus, Infinite Sums	
3	Lec 7		
C	Lec 8	Number Theory: Divisibility, Primes,	
	Lec 9	Prime Examples, Factorial Factors	
4	Lec 10	Number Theory: Relative Primarily, mod:	
	Lec 11	The Congruence Relation, Independent	
	Lec 12	Residues, Additional Applications, Phi and	
		Mu	
5	Lec 13	Special Numbers: Stirling Numbers	
	Lec 14	Special Numbers: Stirling Numbers, Eulerian Numbers, Harmonic Numbers	
	Lec 15	Eulerian Numbers, marmonic Numbers	Class Test 2
6	Lec 16	Special Numbers: Harmonic Summation,	
	Lec 17	Bernoulli Numbers, Fibonacci Numbers	
	Lec 18		
7	Lec 19		
	Lec 20	Generating Functions	
	Lec 21		
8	Lec 22	Introduction to Probability: Probability	
	Lec 23	Definition, Conditional Probability,	
	Lec 24	Independent Probability, Bayes' Formula	
9	Lec 25	Discrete Random variables: The	
	Lec 26	Bernoulli Random Variable, The Binomial	
	Lec 27	Random Variable, The Geometric Random	
		Variable, The Poisson Random Variable	Class Test 3
10	Lec 28	Continuous Random variables: The	
	Lec 29	Uniform Random Variable, Exponential	
	Lec 30	Random Variables, Gamma Random	
		Variables, Normal Random Variables,	
11	Lec 31		
11	Lec 31 Lec 32	Expectation of a Random Variable: The	
	Lec 32	Discrete Case, The Continuous Case	
12	Lec 34	Review on Random Variable	
	Lec 35	Stochastic Process: Definition with	
	Lec 36	application	
13	Lec 37	Markov chains: Definition, Transforming	Class Test 4
	Lec 38	a Process into a Markov Chain, Chapman-	Class 1 est 4
	Lec 39	Kolmogorov Equations	
14	Lec 40	Queuing models	
	Lec 41	Review	
	Lec 42		

- 1. Concrete Mathematics -BY Graham, Knuth, Patashnik, 2nd Edition.
- 2. Introduction to Probability Models BY Sheldon M. Ross, 9th Edition.

3. Introduction to Probability BY Dimitri P. Bertsekas and John N. Tsitsiklis

CSE-315

3 hours in a week, 3.00 Cr.

Digital System Design

Pre-requisite: CSE-305

Rationale:

This course deals with design of different components of basic computer and applying knowledge in the initial interfacing of basic computer.

Objective:

- 1. To provide a basic idea of the structure and interface of different components of Digital Computer Systems.
- 2. To design different components of basic computer
- 3. To understand and design microprocessor of basic computer.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Design different components of a microcomputer like Accumulator, Shifter, ALU, RAM, Scratchpad Memory, 2-port Memory.
- 2. Design a fully customized microprocessor with special features.
- 3. Understand how to design a digital system using various methods.

Course Content:

Digital system design Hierarchy; ASM charts; Hardware description language; Design using MSI and LSI components; Combinational and sequential circuit design with PLA's, Design of memory subsystem using SRAM and DRAM; Design of various components of a computer: Accumulator design, Shifter design, ALU, memory and control unit - hardwired and micro-programmed, Microprocessor based designs; Computer bus standards; Design using special purpose controllers. Introduction to Simple As Possible (Microprocessor)-Architecture, Instruction Set, Design, Microprogramming, SAP-1, SAP-2, SAP-3 Introduction to Embedded Systems; Product design; Product development process.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Design different components of a microcomputer like Accumulator, Shifter, ALU, RAM, Scratchpad Memory, 2-port Memory with presentation.	\checkmark											
Design a fully customized microprocessor with special features.	\checkmark											
Describe the understanding of how to design a digital system using various methods.		\checkmark										

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2 Lec 3	Digital system design Hierarchy; ASM charts; Hardware description language;	
2	Lec 4 Lec 5 Lec 6	Design using MSI and LSI components; Combinational and sequential circuit design with PLA's	Class Test 1
3	Lec 7 Lec 8 Lec 9	Design of memory subsystem using SRAM and DRAM	
4	Lec 10 Lec 11 Lec 12	Design of various components of a computer: Accumulator design,	
5	Lec 13 Lec 14 Lec 15	Shifter design	Class Test 2
6	Lec 16 Lec 17 Lec 18	Design ALU, memory and control unit - hardwired and micro-programmed	
7	Lec 19 Lec 20 Lec 21	Microprocessor based designs	
8	Lec 22 Lec 23 Lec 24	Computer bus standards; Design using special purpose controllers.	Class Test 3
9	Lec 25 Lec 26 Lec 27	Introduction to Simple As Possible (Microprocessor)- Architecture, Instruction Set	
10	Lec 28	Simple As Possible-1: Design and	

	Lec 29 Lec 30	Microprogramming	
11	Lec 31 Lec 32 Lec 33	Simple as Possible-2: Architecture, Instruction Set, Design and Microprogramming	
12	Lec 34 Lec 35 Lec 36	Simple as Possible-: Architecture, Instruction Set, Design and Microprogramming	Class Test 4
13	Lec 37 Lec 38 Lec 39	Introduction to Embedded Systems; Product design	
14	Lec 40 Lec 41 Lec 42	Product development process	

- 1. Digital Logic and Computer Design-M. Morris Manno
- 2. Digital Computer Architecture Malvino, Brown
- 3. Digital Design and Computer Architecture David Harris and Sarah Harris

CSE-316

3 hours in alternate week, 0.75 Cr.

Digital System Design Sessional

Pre-requisite: None

Rationale:

This course deals with design of different components of basic computer and fully customized microprocessor of basic computer. **Objective:**

- 1. To design different components of basic computer
- 2. To understand and design microprocessor of basic computer.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Design different components of the microprocessor using the concept of computer system design.
- 2. Implement combinatorial and sequential system using simulation software.
- 3. Design and implement a customized microprocessor with special features and simulate it using simulation software with team presentation.

Course Content:

Design of various components of a computer: Accumulator design, Shifter design, ALU, memory and control unit - hardwired and micro-programmed, Design fully customized Simple As Possible (Microprocessor)- Architecture, Instruction Set, Control Unit.

Teaching-learning and Assessment Strategy:

Lectures, Class Performance, Project, Quiz, Viva

Assessment Methods & their Weights:

Category	Marks %
Project	40
Quiz	20
Viva / Presentation	10
Class Participation	10
Report	10
Class Assessment	10
Total	100

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Design different components of the microprocessor using the concept of computer system design.								\checkmark				
Implement combinatorial and sequential system using simulation software.											\checkmark	
Design and implement a customized microprocessor with special features and simulate it using simulation software with team presentation.									\checkmark			

Week	Lecture	Topics
1	Lec 1	Discuss about Shifter Design
2	Lec 2	Shifter Design (Software Simulation)
3	Lec 3	Shifter Design (Hardware Implementation)
4	Lec 4	Discuss about ALU Design
5	Lec 5	ALU Design (Software Simulation)
6	Lec 6	ALU Design (Hardware Implementation)
7	Lec 7	Class Performance using
8	Lec 8	Discuss about fully customized Simple As Possible
9	Lec 9	Simple As Possible Design: Architecture and Control Unit
10	Lec 10	Simple As Possible software simulation

11	Lec 11	Simple As Possible Design(Hardware Implementation)-
		Update
12	Lec 12	Simple As Possible Design(Hardware Implementation
		Without Control Unit)
13	Lec 13	Simple As Possible Design(Hardware Implementation With
		Control Unit)
14	Lec 14	Quiz

- 4. Digital Logic and Computer Design-M. Morris Manno
- 5. Digital Computer Architecture Malvino, Brown

CSE-317

3 hours in a week, 3.00 Cr.

Data Communication

Pre-requisite: None

Rationale:

The main course is to learn the working knowledge of data transmission concepts, line control and line sharing and also is to understand the operation of compression optimizing data transfer algorithms.

Objective:

- 1. Be familiar with modern telecommunications and the architecture of a number of different networks
- 2. Understand the principles of protocol layering.
- 3. Apply frequency and time division multiplexing techniques to share network bandwidth among multiple users.
- 4. Use data compression algorithms to maximize network.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe and explain data communication system and its components.
- 2. Familiarize students to the digital and analogue representations and channels.
- 3. Describe the mechanism and techniques of encoding.
- 4. Introduce students to the general principles of circuit and packet switching.
- 5. Introduce students to the wireless Local Area Networks.

Course Content:

Introduction: Communication models, data communication tasks, data communication network standards and organization introduction to TCP/IP models. Data Transmission basics: Analog and digital data, spectrum and bandwidth, Transmission impairments, data rate, and channel capacity. Data Encoding, NRZI Manchester and Differential Manchester

encoding, ASK, FSK, PSK, QPSK, QAM encoding, speared spectrum technique, Sampling theorem and pulse code modulation techniques and speech digitization. Data Transmission: Asynchronous and synchronous data transmission techniques, error, detection techniques, parity cheeks and CRC error correction and hamming code interfacing and EIA 232D or RS 232c. DSL technology: Data Link Control: Line configurations. Multiplexing: Frequency division multiplexing, international FDM carrier standards, Synchronous time division multiplexing, international TDM carrier standards, statistical time division multiplexing, SONET and SDH.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Describe and explain data communication system and its components.	\checkmark											
Familiarize students to the digital and analogue representations and channels.	\checkmark											
Describe the mechanism and techniques of encoding.		\checkmark										
Introduce students to the general principles of circuit and packet switching.	\checkmark											

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2 Lec 3	Introduction: Communication models, data communication tasks.	
2	Lec 4 Lec 5 Lec 6	Data communication network standards and organization introduction to TCP/IP models.	
3	Lec 7 Lec 8 Lec 9	Data Transmission basics: Analog and digital data, spectrum and bandwidth, Transmission impairments, data rate, and channel capacity.	Class Test 1
4	Lec 10 Lec 11 Lec 12	Data Encoding, NRZI Manchester and Differential Manchester encoding, ASK, FSK, PSK, QPSK, QAM encoding.	Class Test 2
5	Lec 13 Lec 14	Speared spectrum technique, Sampling theorem and pulse code modulation	

	Lec 15	techniques and speech digitization.	
6	Lec 16 Lec 17 Lec 18	Data Transmission: Asynchronous and synchronous data transmission techniques.	
7	Lec 19 Lec 20 Lec 21	Error, detection techniques.	
8	Lec 22 Lec 23 Lec 24	Parity cheeks and CRC error correction and hamming code interfacing.	
9	Lec 25 Lec 26 Lec 27	Data Link Control: Line configurations.	Class Test 3
10	Lec 31 Lec 32 Lec 33	Multiplexing: Frequency division multiplexing, international FDM carrier standards, Synchronous time division multiplexing.	
11	Lec 28 Lec 29 Lec 30	International TDM carrier standards, statistical time division multiplexing, SONET and SDH.	
12	Lec 34 Lec 35 Lec 36	STANDARD ETHERNET: MAC Sublayer, Physical Layer. FAST ETHERNET: MAC Sublayer, Physical Layer. GIGABIT ETHERNET: MAC Sublayer, Physical Layer, Ten-Gigabit Ethernet	Class Test 4
13	Lec 37 Lec 38 Lec 39	GIGABIT ETHERNET: MAC Sublayer, Physical Layer, Ten-Gigabit Ethernet	
14	Lec 40 Lec 41 Lec 42	BLUETOOTH: Architecture, Bluetooth Layers	

- 1. Data Communication and Networking(4th ed) Behrouz A Forouzan (2017)
- 2. Data and Computer Communication William Stallings
- 3. Data Communication & Networks R L Brewster

CSE-318

Data Communication Sessional

Pre-requisite: None

Rationale:

The main course is to learn the working knowledge of data transmission concepts, line control and line sharing and also is to understand the operation of compression optimizing data transfer algorithms.

Objective:

- 1. Understand and explain Data Communications System and its components.
- 2. Introduce students to the digital and analogue representations and channels.
- 3. Describe the mechanism and techniques of encoding.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Apply amplitude, frequency and time division multiplexing techniques to share network bandwidth among multiple users.
- 2. Compare each data transmission methods using both signal processing devices and lab software.
- 3. Describe the knowledge of data link layer fundamental in error detection, correction and flow control techniques.

Course Content:

Introduction to MATLAB / Delta Modulation, , AM/FM / AM Modulator & Demodulator, Digital to digital Conversion; Line Coding / DSB-SC and SSB Demodulators, FM Modulator and Demodulator, ASK/PSK/FSK, CDMA, Checksum.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Assessment Methods & their Weights:

Category	Marks %
Online Test – 1	25
Online Test – 2	25
Viva	10
Class Participation	10
Class Assessment	30
Total	100

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Apply amplitude, frequency and time division multiplexing techniques to share network bandwidth among multiple users.						\checkmark						
Compare each data transmission methods using both signal processing devices and lab software.									\checkmark			
Describe the knowledge of data link layer fundamental in error detection, correction and flow control techniques.						\checkmark						

Lecture Schedule:

Week	Topics
1 & 2	Introduction to MATLAB / Delta Modulation
3 & 4	Evaluation On Lab-1, AM/FM / AM Modulator & Demodulator
5&6	Digital to digital Conversion; Line Coding / DSB-SC and SSB Demodulators
7	Online-1
8&9	Digital to digital Conversion; Line Coding / FM Modulator and Demodulator
10 & 11	ASK/PSK/FSK
12 & 13	CDMA, Checksum
14	Viva/Quiz + Online-2

Text and Ref Books:

- 1. Data Communication and Networking(4th ed) Behrouz A Forouzan (2017)
- 2. Data and Computer Communication William Stallings

CSE-319

3 hours in a week, 3.00 Cr.

Software Engineering

Pre-requisite: None

Rationale:

This course is designed to provide a general introduction to software engineering and design. It will introduce the important concepts such as software processes and agile methods, essential software development activities from initial software specification through to system evolution.

Objective:

After undergoing this course, students should be able to:

- 1. Understand the process of designing, building, and maintaining large scale software.
- 2. Learn to estimate time and cost.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe the process of designing.
- 2. Build and maintain large scale software.
- 3. Discuss the time-cost estimation and ethical values.

Course Content:

Concepts of software engineering: Software engineering paradigms: Different phases of software;Design concepts and principles: architectural design, user interface design, object oriented software development and design, iterative development and the unified process, sequential waterfall life cycles; UML diagrams: Interaction and Collaboration Diagram for designing Software, class diagram. Structured and non-Structured programming; Datadirected design techniques: Modular design; Design of automatic, redundant and defensive program; COCOMO model; Tree model; PNR curve; Statistical model; Software testing: white box and black box testing, basis path testing, testing for specialized environment; Software testing strategies: unit testing, integration testing, validation testing, system testing; Art of debugging; Zips Concepts of software reliability and availability; Software repair, downtime, error and faults, specification and correction; New error generation hypothesis; Estimating number of bugs in a computer program; Reliability. Models; Availability models; Quality assurance; Quality measures; Different cost estimation models and their comparisons; Software project organization; Management and communication skills.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Describe the process of designing.												
Build and maintain large scale software.												
Discuss the time-cost estimation & ethical values.					\checkmark							

Lecture Schedule

Week	Lecture	Topics	Class Test
	Lec 1	•	
1	Lec 2	Introduction to Software engineering	
	Lec 3		
	Lec 4	Professional SW development and SW Enga	
2	Lec 5	Professional SW development and SW Engg ethics	Class Test 1
	Lec 6	ethics	
	Lec 7		
3	Lec 8	Requirements Engineering	
	Lec 9		
	Lec 10		
4	Lec 11	Software Processes	
	Lec 12		
	Lec 13	Agile view of Process / Agile software	
5	Lec 14	development	
	Lec 15		Class Test 2
	Lec 16		Class I est 2
6	Lec 17	System modeling	
	Lec 18		
	Lec 19		
7	Lec 20	Performing User interface design (Pres)	
	Lec 21		
	Lec 22	Architectural Design	
8	Lec 23	Alemeetural Design	
	Lec 24		
	Lec 25		
9	Lec 26	Product Metrics (Pres)	Class Test 3
	Lec 27		
	Lec 31		
10	Lec 32		
	Lec 33	Design and Implementation	
	Lec 28		
11	Lec 29	Software Testing and Maintenance	
**	Lec 30		
	Lec 34		-
12	Lec 35	Dependability and Security	
	Lec 36	· · · · · · · · · · · · · · · · · · ·	
	Lec 37		- Class Test 4
13	Lec 38	Security Engineering	
10	Lec 39		
	Lec 40		-
14	Lec 41	Project planning and management	
	Lec 42		

Text and Ref Books:

- 1. Software Engineering BY Ian Sommerville
- 2. Software Engineering- a practitioner's Approach BY Roger S. Pressman
- 3. Software Engineering: Principles and Practice BY Hans van Vliet

Integrated Design Project/Capstone Project 1

Pre-requisite: CSE 105, CSE 203, CSE 215, CSE 205 and their corresponding sessionals and CSE 220.

Rationale:

Culminating demonstration of skills and knowledge achieved to date to apply and solve real life problems solvable through computer technology.

Objective:

To apply technical knowledge and skills for further research and design of computer system at professional engineering scale.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Develop systems' requirement specification from top-level customer requirements.
- 2. Analyse and compare design alternatives, at the system and subsystem levels, and use measures of performance or other criteria to rank alternatives.
- 3. Plan and organize an engineering design project using tools such as Gantt charts to develop a work breakdown structure, develop a schedule including milestones, and estimate effort and costs incorporating the ethical, financial and environmental issues.
- 4. Develop a design concept and elaborate it through to a detailed design by decomposing a system concept into component subsystems, identifying the subsystem requirements and applicable standards, and defining interfaces between the subsystems.
- 5. Build prototypes of key subsystems.

Course Content: Knowledge Acquisition:

Introduction and brief with IDSs and Softwares, Discussion and submission Project Proposal, Learning Version Control System: Github, Interface design, Database Connectivity: Sqlite, Json, Cloud, Firebase database, Google Api, Sensor.

Implementation:

Idea Submission, Objective, Methodology, Literature Review, High Level Design, Low Level Design, Evaluation and feedback, Design & Partial Implementation (Prototype/Demo).

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, rubrics on problem analysis, literature review and designing prototype.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the Course		Program Outcome (PO)											
		2	3	4	5	6	7	8	9	1 0	1 1	1 2	
Develop system requirements from top-level customer requirements.							1						
Analyse and compare design alternatives, at the system and subsystem levels, and use measures of performance or other criteria to rank alternatives.		\checkmark	\checkmark										
Plan and organize an engineering design project using tools such as Gantt charts to develop a work breakdown structure, develop a schedule including milestones, and estimate effort and costs.							1						
Develop a design concept and elaborate it through to a detailed design by decomposing a system concept into component subsystems, identifying the subsystem requirements and applicable standards, and defining interfaces between the subsystems			\checkmark	V	(
Build prototypes of key subsystems.													

Week	Topics	Remarks
1	Introduction and brief with software	
2	Learning Version Control System: Github	
3	Interface Design, activity and navication.	
4	Database Connectivity: Sqlite, Json, Cloud*	
	Firebase database	
5	Google Api	
6	Sensor	
7	Database Integration with the application	
8-9	Topic Selection and Project Plan	
10-11	Objective, Methodology, Literature Review	
12-14	Design & Partial Implementation (Prototype/Demo)	

- 3. Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch Guides) 3rd Edition
- 4. Professional Android, Reto Meier, Ian Lake; 4th Edition

HUM-315 Engineering Economics

2 hours in a week, 2 Cr.

Pre-requisite: None

Rationale:

To be able to analyze and select the most economical alternative among several design alternatives.

Objective:

- 1. To understand time-value of money concepts and the criteria for making economicbased decisions.
- 2. To analyze before-tax and after-tax cash flows.
- 3. To understand economic risk analysis techniques.
- 4. To conduct minimum life cycle cost tradeoffs between initial and repair costs.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Explain time-value of money concepts and the criteria for making economicbased decisions.
- 2. Evaluate the design requirement of various engineering machines.
- 3. Interpret the economic risk of analysis techniques.
- 4. Alustrate minimum life asyster cost trade offshortween initial and repair costs.

Course Content:

Microeconomics: Definition of economics; Fundamentals of economics; Market and government in a modern economy; Basic elements of supply and demand; Choice and utility; indifference curve technique; Analysis of cost; Short run long run theory of production. Macroeconomics: Key concept of macroeconomics; Saving, consumption, investment; National income analysis; Inflation, Unemployment. Development: Theories of developments; Banking system of Bangladesh, National Budget, Development partners(World Bank, Asian Development Bank, World Trade Organization, International Monetary Fund)

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

		Program Outcome (PO)										
Course Outcomes(CO) of the Course										1	1	1
	1	2	3	4	5	6	7	8	9	0	1	2
Explain time-value of money concepts and the criteria												
for making economic-based decisions.												
Deduce before-tax and after-tax cash flows.												
Interpret the economic risk of analysis techniques.												
Illustrate minimum life cycle cost tradeoffs between				,								
initial and repair costs.				N								

Lecture	Topics	Class Test
Lec 1	Definition of economics	
Lec 2		
Lec 3	Fundamentals of economics	
Lec 4		
	Market and government in a modern	Class Test 1
Lec 6	economy	
Lec 7	Basic elements of supply and demand	
Lec 8		
Lec 9	Choice and utility; indifference curve	
Lec 10	technique	- Class Test 2
Lec 11	Analysis of cost	
Lec 12		
Lec 13	Short run long run theory of production	
Lec 14		
Lec 15	Macroeconomics: Key concept of	
Lec 16	macroeconomics	
Lec 17	Saving, consumption, investment	
Lec 18		
Lec 19	National income analysis	Class Test 3
Lec 20		
Lec 21	Inflation Unemployment Development	
	inflation, Onempioyment. Development	
	Theories of developments	-
	Banking system of Bangladesh	\dashv
		Class Test 4
	National Budget, Development partners	
	Lec 1 Lec 2 Lec 3 Lec 4 Lec 5 Lec 6 Lec 7 Lec 8 Lec 9 Lec 10 Lec 11 Lec 12 Lec 13 Lec 14 Lec 15 Lec 16 Lec 17 Lec 18 Lec 19	Lec 1 Lec 2Definition of economicsLec 3 Lec 4Fundamentals of economicsLec 4Fundamentals of economicsLec 5 Lec 6 economyMarket and government in a modern economyLec 7 Lec 7 Lec 7Basic elements of supply and demand Lec 8Lec 9 Lec 10 Lec 10 Lec 11 Lec 11 Lec 12Choice and utility; indifference curve techniqueLec 11 Lec 12Analysis of costLec 12Lec 13 Macroeconomics: Key concept of macroeconomicsLec 15 Lec 16 MacroeconomicsMacroeconomicsLec 17 Lec 18Saving, consumption, investmentLec 20Inflation, Unemployment. Development Lec 22Lec 23 Lec 24Theories of developments Lec 26Lec 27National Budget, Development partners

CSE-350 4 weeks, 1.00 Cr. Industrial Training

This course is mandatory. Evaluation report from industry is to be submitted at the end of the training, and accordingly to be incorporated in the tabulation sheet.

3 hours in a week, 1.50 Cr.

HUM-312

English Sessional

Pre-requisite: None

Rationale:

To help to improve spoken English skills and to enable to communicate more effectively in English.

Objective:

- 1. To develop confidence among students.
- 2. To learn how to think logically and how to give group presentation.
- 3. To develop the English language skills (listening, speaking, reading and writing) that are necessary to be successful on the IELTS test.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Determine and get a clear idea about how to speak understand and speak English quickly and smartly.
- 2. Organize them within the shortest possible time to present their ideas and opinions.
- 3. Find out the main points of any long article within a very limited time.
- 4. Recognize the techniques of any effective writing.
- 5. Overcome language barrier.

Course Content:

Introduction to Language: Introducing basic skills of language; Phonetics, English Vowel and consonant sounds, Difference between different accents, Self-Introduction, how a speaker should introduce himself; Situational talks / dialogues; Speaking: IELTS speaking - Part 1, 2 & 3; Group discussion, taking participation in any discussion and drawing conclusion and giving recommendation; Brain storming: Principles of brain storming. How to think logically; Facing any problem, trying to find out possible solutions, drawing conclusion and giving recommendation; Individual / Group presentation, good presentation skills; Skimming, Scanning & Analytical Ability, techniques of skimming, scanning and generating ideas through purpose reading. Reading: Introducing IELTS academic reading comprehension, Listening and understanding, note taking and answering questions; Listening: Introducing IELTS / TOEFL listening section Academic Writing: Introducing IELTS academic writing, Public Speaking: Basic elements of good presentation or public speaking, some tips for good speech.

Teaching-learning and Assessment Strategy:

Speaking, Presentation, Report Writing, Group Discussion, Lab Test/ Quiz.

Assessment Methods & their Weights:

Assessment Method	(100%)
Speaking	25
Presentation	25
Report Writing	20
Quiz/ Viva	10
Class Participation	10
Group Discussion	10

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes (CO) of the Course		Program Outcome (PO)													
Course Outcomes (CO) of the Course										1	1	1			
	1	2	3	4	5	6	7	8	9	0	1	2			
Determine and get a clear idea about how to speak															
understand and speak English quickly and smartly.						N									
Organize them within the shortest possible time to										2					
present their ideas and opinions.										N					
Find out the main points of any long article within a															
very limited time.															
Recognize the techniques of any effective writing.															
Overcome language barrier.															

Week	Lecture	Topics							
1	Lab 1	Introduction to Language: Introducing basic skills of language; Phonetics, English Vowel and consonant sounds, Difference between different accents							
2	Lab 2	Self-Introduction, how a speaker should introduce himself; Situational talks / dialogues							
3	Lab 3Speaking: IELTS speaking - Part 1, 2 & 3								
4	4 Lab 4 Public Speaking: Basic elements of good presentation or public speaking, some tips for good speech.								
5	Lab 5	Speaking Test							
6	Lab 6	Group discussion , taking participation in any discussion and drawing conclusion and giving recommendation							
7	Lab 7	Brain storming: Principles of brain storming. How to think logically; Facing any problem, trying to find out possible solutions, drawing conclusion and giving recommendation							
8	Lab 8	Individual / Group presentation, good presentation skills; Skimming, Scanning & Analytical Ability, techniques of skimming, scanning and generating ideas through purpose							

		reading								
9	Lab 9	Reading: Introducing IELTS academic reading comprehension,								
10	Lab 10	Academic Writing: Introducing IELTS academic writing, Report Writing								
11	Lab 11	Listening and understanding, note taking and answering questions								
12	Lab 12	Listening: Introducing IELTS / TOEFL listening section								
13	Lab 13	Group Presentation								
14	Lab 14	Quiz/ Viva								

- 1. Introduction to Linguistics- Prof Dr. Maniruzzaman.
- 2. A Guide to Correct Speech (5th ed)- S M Amanullah, Albatross Publication (2007).
- 3. Oxford Advanced Learners' Dictionary (7th ed)- Oxford University Press (2007).
- 4. English Grammar in Use (4th ed)- Raymond & Murphy, Cambridge University Press (2012).
- 5. From Paragraph to Essay- Maurice Imhoof and Herman Hudson, Longman, London (1976).
- 6. Headway Series- Advanced Level (2 parts with CDs) (4th ed), Oxford University Press Ltd.
- 7. IELTS and TOEFL practice book- Cambridge University Press.
- 8. English for Technical Students- David Bonamy, Longman Publisher.

LEVEL-4 TERM-I

CSE-400

3 hours in a week, 1.50 Cr.

Thesis

Pre-requisite: None

Rationale:

This course motivates to go neck-deep in research, synthesize it, and make a point or look at something in a different way after going through all of it.

Objective:

- 1. To study, analyze and provide solutions for the problems of Computer Science and Engineering.
- 2. To learn about the research methodology as well as technical document writing.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Select, analyze, and classify a particular field to do research.
- 2. Solve real life complex problems
- 3. Explain and describe the time-cost estimation and ethical values.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Select, analyze, and classify a particular field to do research.		\checkmark										
2. Solve real life complex problems.			\checkmark									
3. Explain and describe the time-cost estimation and ethical values.								\checkmark				

CSE-401

System Analysis, Design and Development

Pre-requisite: None

Rationale:

This course motivates to perceive information systems planning, analysis, design and implementation; graphical methods for representing information structure, practical design methodologies, database design and prototyping; communication skills, project management to solve various real life problems.

Objective:

- 1. To assist students develop a comprehensive understanding of how information systems are developed through the activities of systems planning, analysis, design and implementation.
- 2. To analyze different information systems for different real life organizational context.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss the practical approaches of designing & developing Information Systems for industries/ business organizations.
- 2. Discover and develop awareness of Information Technological ecosystems.
- 3. Solve real life complex problems.

Course Content:

Different types of information; Qualities of information; Analysis o Information requirements for modern organizations; Role, tasks and attributes of a Systems Analyst; Sources of information; Information gathering techniques; Editing; Handling of missing information; Requirements specifications; Steps of systems analysis; Concepts of feasibility analysis: Analysis of technical facilities; Cost-benefit analysis; Design of an information system; Design Patterns; Hardware and software analysis; Introduction to IT project management: Estimation of confidence level: Simplex method for minimization of project time; project team organization, ; IT Adoption and Diffusion theories; Ethics and privacy: Control and security.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Discuss the practical approaches of designing & developing Information Systems for industries/ business organizations.			\checkmark									
2. Discover and develop awareness of Information Technological ecosystems.				\checkmark								
3. Solve real life complex problems.			\checkmark									

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Systems Concepts	
	Lec 2	Types and Qualities of Information	
	Lec 3	Information Systems Environment	
2	Lec 4	The Systems Development Life Cycle	
	Lec 5	Analysis of Information	
	Lec 6	Information Requirements for Modern	
		Organizations	Class Test 1
3	Lec 7	The Role of the Systems Analyst	Class Test I
	Lec 8	The Tasks of the Systems Analyst	
	Lec 9	The Attributes of the Systems Analyst	
4	Lec 10	Systems Planning and the Initial	
	Lec 11	Investigation	
	Lec 12	Sources of information	
		Information Gathering Techniques	
5	Lec 13	Requirements Analysis	
	Lec 14	Requirement Specification	
	Lec 15	Steps of Requirement Analysis	Class Test 2
6	Lec 16	Business Process Model	
	Lec 17	Data Flow Diagrams	
	Lec 18	Project Effort Analysis Methods	
7	Lec 19	The Tools of Structured Analysis	
	Lec 20	Feasibility Analysis	
	Lec 21	Analysis of Technical Facilities	
8	Lec 22	User Interface Design	
	Lec 23	Interaction Design	
	Lec 24	Information Architecture	
9	Lec 25	Design of an Information System	
	Lec 26	Introduction to Project Management	Class Test 3
	Lec 27	Introduction to Project Management (Contd.)	

10	Lec 31	Project Time Management	
	Lec 32	Estimation of Confidence Level	
	Lec 33	Network Model for Project Time Estimation	
11	Lec 28	Productivity Tools	
	Lec 29	Feasibility Analysis	
	Lec 30	Analysis of Technical Facilities	
12	Lec 34	Cost/Benefit Analysis	
	Lec 35	IT Adoption	
	Lec 36	Diffusion Theory	
13	Lec 37	Project Risk Management	
	Lec 38	Project Team Organization	Class Test 4
	Lec 39	Estimation of confidence level	
14	Lec 40	Information System Security	
	Lec 41		
	Lec 42	Control and Security	

- 1. System Analysis and Design (2nd Edition) Elias M. Awad; Galgotia Publications Pvt. Ltd. (2010)
- 2. System Analysis and Design (2nd Edition) Raja Raman; Prentice Hall (2004)
- 3. System Analysis and Design Methods (7th Edition) Jeffery L. Whitten; McGraw Hill (2007)
- 4. System Analysis and Design (9th Edition) Kendel & Kendel; Pearson (2013)

CSE-402

1.50 hours in a week, 0.75 Cr.

Information System Design and Development Sessional

Pre-requisite: None

Rationale:

This course motivates to practically perceive information systems planning, analysis, design and implementation; graphical methods for representing information structure, practical design methodologies, database design and prototyping; communication skills, project management to solve various real life problems.

Objective:

- 1. To assist students develop a comprehensive understand practically of how information systems are developed through the activities of systems planning, analysis, design and implementation.
- 2. To analyze different information systems for different real life organizational context practically.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Design and implement Information Systems for industries/ business organizations.
- 2. Impose security levels to the projects of Information Technological ecosystems.
- 3. Solve real life complex problems.

Course Content:

Analysis of Information requirements for modern organizations; Information gathering techniques; Editing; Handling of missing information; Requirements specifications; Steps of systems analysis; Concepts of feasibility analysis: Analysis of technical facilities; Costbenefit analysis; Design of an information system; Design Patterns; Hardware and software analysis; Introduction to IT project management: Estimation of confidence level: Simplex method for minimization of project time; project team organization, ; IT Adoption and Diffusion theories; Ethics and privacy: Control and security.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Home Assignment/Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the	Program Outcome (PO)													
Course		2	3	4	5	6	7	8	9	10	11	12		
Design and implement Information Systems for industries/ business organizations.									\checkmark					
Impose security levels to the projects of Information Technological ecosystems.											\checkmark			
Solve real life complex problems.							\checkmark							

Lecture Schedule

Week	Topics	Remarks
1-2	Introduction to Systems Concepts Project Proposal Approval	
3-4	System Analysis Requirement Specification	Report 1
5-6	Data Flow Diagrams	Report 2
7-8	Prototype Design	Report 3
9-10	Implementation	Project Update 1
11-12	Unit test and performance measure Enhancement of Design Implement	Report 4 Project Update 2
13-14	Final Project Submission Presentation Quiz	

Text and Ref Books:

- 1. System Analysis and Design (2nd Edition) Elias M. Awad; Galgotia Publications Pvt. Ltd. (2010)
- 2. System Analysis and Design (2nd Edition) Raja Raman; Prentice Hall (2004)

CSE-403

3 hours in a week, 3.00 Cr.

Artificial Intelligence

Pre-requisite: None

Rationale:

Artificial intelligence is the beginning of revolution for rational behavior of intelligent agents along with representation, planning, learning and perception of knowledge.

Objective:

- 1. To discuss and distinguish the notions of rational behavior and intelligent agents.
- 2. To develop a general appreciation of the goals, subareas, achievements and difficulties of AI.
- 3. To have knowledge of methods of blind as well as informed search in case of knowledge representation, planning, learning, robotics and other AI areas and ability to practically apply the corresponding techniques.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss and distinguish the notions of rational behavior and intelligent agents.
- 2. Develop a general appreciation of the goals, subareas, achievements and difficulties of AI.

- 3. Analysis methods of blind as well as informed search and ability to practically apply the corresponding techniques.
- 4. Investigate of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.

Course Content:

Overview of AI, Knowledge representation, LISP/Prolog and other Al programming languages; Review of Uninformed Search Strategies and game playing; Informed search Strategies: A*, Heuristic functions, Memory Bounded Search (IDA*, SMA*); Iterative improvement Search, constraint satisfaction problems. Review of Propositional logic, first order Logic, Introduction to Planning, Partial Order Planning. Bayesian Rule and its use in probabilistic reasoning; Belief Networks and Decision Networks; Learning Decision Trees; Learning General Logical descriptions-Hypothesis. Introduction to Natural Language Processing.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

		Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	
1. Discuss and distinguish the notions of rational behavior and intelligent agents.	v												
2. Develop a general appreciation of the goals, subareas, achievements and difficulties of AI.			v										
3. Analysis methods of blind as well as informed search and ability to practically apply the corresponding techniques.		v											
4. Investigate of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.				V									

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to AI	
	Lec 2	Uninformed Search I	
	Lec 3		
2	Lec 4	Uninformed Search II	
	Lec 5		
	Lec 6	Informed Search I	
3	Lec 7	Informed Search II	Class Test 1
	Lec 8		
	Lec 9		
4	Lec 10	Beyond Classical Search	
	Lec 11		
	Lec 12		
5	Lec 13	Adversarial Search I	
	Lec 14		
	Lec 15		Class Test 2
6	Lec 16	Adversarial Search II	Class Test 2
	Lec 17	Constraint Satisfaction Problems I	
	Lec 18		
7	Lec 19	Constraint Satisfaction Problems II	
	Lec 20		
	Lec 21		
8	Lec 22	Uncertainty and Probabilities	
	Lec 23		
	Lec 24		
9	Lec 25	Markov Models (MM), Hidden MM	
	Lec 26	(HMM)	
	Lec 27		Class Test 3
10	Lec 31	Bayes Net	
	Lec 32		
	Lec 33		
11	Lec 28	ML: Naive Bayes	
	Lec 29		
	Lec 30		
12	Lec 34	ML: Perceptions	
	Lec 35	ML: Kernels and Clustering	
	Lec 36		— Class Test 4
13	Lec 37	Advanced Applications: NLP, Games and	Class 1 est 4
	Lec 38	Cars	
	Lec 39		

14	Lec 40	Advanced Applications: (Robotics and	
	Lec 41	Computer Vision)	
	Lec 42		

- 1. Artificial Intelligence: A Modern Approach (3rd Edition) Stuart Jonathan Russell, Peter Norvig; Prentice Hall (2010)
- 2. Artificial Intelligence: A New synthesis Nils J. Nilsson; Routledge

CSE-404

1.5 hours in a week, 0.75 Cr.

Artificial Intelligence Sessional

Pre-requisite: None

Rationale:

Hands on orientation with AI programming, intelligent agents along with how to representation, planning, learning and perception of knowledge of agents.

Objective:

- 1. To have general understanding of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.
- 2. To develop programming skills for AI applications and explore traditional AI techniques and algorithms.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Have general understanding of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.
- 2. Develop programming skills for AI applications.
- 3. Exposure to traditional AI techniques and algorithms.

Course Contents:

Introduction to Intelligent Machines, State Mapping, A* Search implementation, Local search Algorithm, Advestrarial Search, Constrant Satisfaction Problem Solving.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Assessment Methods & their Weights:

Assessment Method	(100%)
Tasks	50
Quiz/Viva	10
Class Participation	10
Observation	10
Class performance	20

Mapping of Course Outcomes (CO) and Program Outcomes:

		Program Outcome (PO)										
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Have general understanding of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.							V					
Develop programming skills for AI applications.								٧				
Exposure to traditional AI techniques and algorithms.											V	

Week	Lecture	Topics
1	Lec 1	Orientation with AI practical areas
	Lec 2	-
	Lec 3	
2	Lec 4	Assignment on State Mapping
	Lec 5	
	Lec 6	
3	Lec 7	Assignment on Search Algorithm
	Lec 8	
	Lec 9	
4	Lec 10	Assignment on Local Search
	Lec 11	
	Lec 12	
5	Lec 13	Assignment on Adversarial Search
	Lec 14	
	Lec 15	
6	Lec 16	Assignment on Constraint Satisfaction Problem

	Lec 17	
	Lec 18	
7	Lec 19	Quiz/Viva
	Lec 20	
	Lec 21	

CSE-405

3 hours in a week, 3.00 Cr.

Computer Interfacing

Pre-requisite: None

Rationale:

This course introduces basic concepts and techniques for interfacing a microcontroller or microprocessor to external devices for data collection and process control and developing the related software required. It is aimed at students interested in data acquisition and real-time control systems, design and construct simple control, data logging system incorporating input/output to and from external devices and design simple control system for stepper and DC motor.

Objective:

- 1. To enable the students familiar to interface external components (peripherals, sensors, PPIs, PICs etc.) with computer systems.
- 2. To enhance the knowledge on basic working principle and different applications of basic microcomputer and microcontroller.
- 3. To enable the students capable of designing and constructing simple control system incorporating input/output to and from external devices.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe how to interface different types of external components (peripherals, sensors, PPIs, PICs etc.) with computer systems.
- 2. Escalate the capability of designing and constructing simple control system incorporating input/output to and from external devices.
- 3. Analyze the basic working principle of basic microcomputer, microcontroller and enhance applications of different hardware components.

Course Content:

I/O system; I/O devices, designing I/O systems; Programmable peripheral interface (interface to A/D and D/A converter); keyboard/display interface; Programmable timer; data acquisition systems, Optical interrupters and couplers, incremental encoders, interfacing; Programmable interrupt controller, DMA controller; floppy and hard-disk controller; serial communication interface; ISA. PCI, AGP, PS/2 and USB interface; Interfacing with power circuits, stepper motors, opto-isolation; controlling semiconductor power switches MOSFET, BJT. SCR. Triac and Solenoids; temperature, pressure, light sensors and transducers; Application of Opto-coupler and relays; Embedded Communication Systems, Embedded Computer Security.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Describe how to interface different types of external components (peripherals, sensors, PPIs, PICs etc.) with computer systems	\checkmark											
2. Escalate the capability of designing and constructing simple control system incorporating input/output to and from external devices			\checkmark									
3. Analyze the basic working principle of basic microcomputer, microcontroller and enhance applications of different hardware components		\checkmark										

Mapping of Course Outcomes (CO) and Program Outcomes:

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2 Lec 3	Parallel data transfer, parallel printer interface, Keyboard Interface, Display Interface,I/0 system; I/O devices, designing I/O systems	
2	Lec 4 Lec 5 Lec 6	Interfacing to high power devices, Interface to AC power devices, interfacing to stepper motor	
3	Lec 7 Lec 8	D/AApplicationsandInterfacingtoMicrocomputers,A/Dconverters	Class Test 1

	Lec 9	Specifications/types,	
4	Lec 10 Lec 11 Lec 12	Microcomputers based Scale, Microcomputers based industrial Process Control System , PID Controller	
5	Lec 13 Lec 14 Lec 15	Triac and Solenoids; temperature, pressure, light sensors and transducers	Class Test 2
6	Lec 16 Lec 17 Lec 18	D/A Converter Operation and Specifications, ISA. PCI, AGP, PS/2 and USB interface	
7	Lec 19 Lec 20 Lec 21	Embedded Communication Systems, Embedded Computer Security	
8	Lec 22 Lec 23 Lec 24	Data Highways, Computer I/O Operations, Programmed I/O, Interrupts, Vectored Interrupt, Priority Interrupts using Priority Encoder ,Priority Interrupt using a Daisy Chain	
9	Lec 25 Lec 26 Lec 27	Block Data Transfer, DMA, ParallelInterface, SCSI, Serial Interface-SynchronousTransmission	Class Test 3
10	Lec 31 Lec 32 Lec 33	DMA Controller 8257,RS232, null modem connection, line drivers, Single-ended Transmission, balanced transmission, differential receiver	
11	Lec 28 Lec 29 Lec 30	Disc and tape storage, Recording on a Magnetic surface, Magnetic Disc Formats, zoning, Interleaving, Magnetic recording Code, Recording Codes, Run-length limited (RLL),	
12	Lec 34 Lec 35 Lec 36	Disc formatting, Track seeking, Sector Location, Optical Storage, Forms of Optical Disc storage, Optical Reading Mechanism	
13	Lec 37 Lec 38 Lec 39	CD-ROM Optical Disks, WORM, Optical Positioning, Magneto Optical Disk, Performance Enhancers	Class Test 4
14	Lec 40 Lec 41 Lec 42	Memory Interfacing, Memory Space Management	

1. The Intel Microprocessors (8th Edition) - Barry B Brey; Pearson (2008)

- 2. Microprocessors and Interfacing (2nd Edition) Douglas V Hall; McGraw Hill (2005)
- 3. Computer Peripherals (3rd Edition) Cook and White; Butterworth-Heinemann (1995)

HUM-415

2 hours in a week, 2.00 Cr.

Financial and Managerial Accounting

Pre-requisite: None

Rationale:

This course introduces the preliminaries of accounting principles, cost classification and a variety of financial analysis - ratio analysis, capital budgeting, break-even analysis, cost-volume-profit analysis, contribution margin analysis etc. that is helpful for making important decisions of the management control system of any organization or business.

Objective:

- 1. To discuss the fundamentals of accounting, the use and effects of financial statement for a particular organization.
- 2. To analyze different types of cost and cost management for different components of a management control system or a business.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

1. Discuss, describe and interpret a financial accounting statement and the use of financial ratios. The student should be able to understand how the reporting might be affected by a particular (creative) business.

2. Enhance the various elements of a management control system (role, scope, drawbacks, implementation etc.).

3. Determine the variety of cost concepts to be applied in a management control system.

4. Select and analyze the nature of a business and outline main features of an appropriate control system.

Course Content:

Financial Accounting: Objectives and importance of accounting; Accounting as an information system. Computerized system applications in accounting. Recording system,

double entry mechanism; account and their classification; Accounting equation: Accounting cycle: Journal, ledger, trial balance. Preparation of financial statements considering adjusting and closing entries; Accounting concepts (principles) and conventions. Financial statement analysis and interpretation: Ratio analysis. Cost and Management Accounting: Cost concepts and classification; Overhead cost: meaning and classification; Distribution of overhead cost: Overhead recover method/rate; Job order costing: preparation of job cost sheet and question price, Inventory valuation: absorption costing and marginal/variable costing technique; Cost-Volume-Profit analysis: meaning, break-even analysis, contribution margin analysis sensitivity analysis. Short-term investment decisions; relevant and differential cost analysis. Long-term investment decisions: capital budgeting, various techniques of evaluation of investments.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Discuss, describe and interpret a financial accounting statement and the use of financial ratios. The student should be able to understand how the reporting might be affected by a particular (creative) business.	\checkmark											
2. Enhance the various elements of a management control system (role, scope, drawbacks, implementation etc.).				\checkmark								
3. Determine the variety of cost concepts to be applied in a management control system.				\checkmark								
4. Select and analyze the nature of a business and outline main features of an appropriate control system.		\checkmark										

Mapping of Course Outcomes (CO) and Program Outcomes:

Week	Lecture	Topics	Class Test
1	Lec 1	Financial Accounting	
	Lec 2	Objectives of Accounting	
		Importance of Accounting	
2	Lec 3	Accounting as an Information System.	
	Lec 4	Computerized Applications in Accounting	Class Test 1
		Computerized Applications in Accounting	Class Test I

		(Contd.)	
3	Lec 5	Recording System	
	Lec 6	Double Entry Mechanism	
		Double Entry Mechanism (Contd.)	
4	Lec 7	Account Classification	
	Lec 8	Accounting Equation	
		Account Cycle	
5	Lec 9	Journal	
	Lec 10	Ledger	
		Trial Balance	
6	Lec 11	Financial Statement Preparation	Class Test 2
	Lec 12	Adjusting Entries	
		Closing Entries	
7	Lec 13	Accounting Principles	
	Lec 14	Accounting Convention	
		Accounting Convention (Contd.)	
8	Lec 15	Financial Statement Analysis	
	Lec 16	Financial Statement Interpretation	
		Ratio Analysis	
9	Lec 17	Cost Accounting	
	Lec 18	Management Accounting	
		Cost Concept and Classification	Class Test 3
10	Lec 19	Distribution of Overhead Cost	
	Lec 20	Overhead Recover Method/Rate	
		Job Order Costing	
11	Lec 21	Preparation of Job Cost Sheet and Question	
	Lec 22	Price	
		Inventory Valuation	
		Absorption Costing	
12	Lec 23	Marginal/Variable costing Technique Cost-	
	Lec 24	Volume-Profit Analysis	
		Break-Even Analysis	
13	Lec 25	Contribution Margin Analysis	
	Lec 26	Sensitivity Analysis.	Class Test 4
		Relevant and Differential Cost Analysis	
14	Lec 27	Long-term Investment Decisions	
	Lec 28	Capital Budgeting	
		Various Techniques of Evaluation of	
		Investments	
	•		

1. Managerial Accounting (14th Edition) - Ray Garrison, Eric Noreen and Peter Brewer;

McGraw Hill (2011)

2. Accounting Principles (12th Edition) - Jerry J. Weygandt Paul D. Kimmel Donald E. Kieso; Wiley (2015)

CSE-460

6 hours in a week, 3.00 Cr.

Integrated Design Project/Capstone Project – 2

Pre-requisite: Project CSE-360

Rationale:

Culminating demonstration of skills and knowledge achieved to date to apply and solve real life IT dependent problems using computer technology. **Objective:**

Objective of this course is to combine engineering theory with rigorous research in design and development of computerized system considering the contextual ethical, financial and environmental issues.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Design appropriate tests to measure and evaluate the performance of prototype subsystems to determine whether they meet performance and interface requirements considering ethical, financial and environmental issues and recommend changes.
- 2. Constructively contribute to the accomplishments of a multidisciplinary team, including critical evaluation of self and team-member performance.
- 3. Communicate the team's logistical and technical approaches to the design project in a polished, co-authored, written proposal, using language and graphics appropriate to the technical discipline.
- 4. Succinctly report individual and team performance against the plan.
- 5. Describe organizational and technical plans and progress in oral presentations, using high-quality, informative, graphical and textual elements.

Course Content:

Knowledge Acquisition: Information gathering techniques, Design of an information system; Hardware components, pin configurations of microcontroller, peripherals, Sensors, PPIs, PICs, Use of Arduino, Raspberry Pi;

Implementation: Concept development, prototype enhancement, complete implementation, unit testing and integration testing with verification, feedback and improvement, result analysis and performance evaluation, report writing, paper submission, presentation and final evaluation.

Teaching-learning and Assessment Strategy:

Lectures, performances, assignments, rubrics on prototype design, implementation and report submission.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Design appropriate tests to measure and evaluate the performance of prototype subsystems to determine whether they meet performance and interface requirements considering ethical, financial and environmental issues and recommend changes.							\checkmark	V				
Constructively contribute to the accomplishments of a multidisciplinary team, including critical evaluation of self and teammember performance.									\checkmark	\checkmark		
Communicate the team's logistical and technical approaches to the design project in a polished, co-authored, written proposal, using language and graphics appropriate to the technical discipline.										\checkmark		\checkmark
Succinctly report individual and team performance against the plan.										\checkmark		
Describe organizational and technical plans and progress in oral presentations, using high-quality, informative, graphical and textual elements.											\checkmark	

Week	Lecture	Topics	Remarks
1	Lec 1-2	Orientation	
		Information gathering techniques	

2	Lec 3-4	Approval of Conceptual development of proposed	Project Plan
		project	5
		Hands on session on designing information system	
3	Lec 5-6	Hands on session on hardware components and microcontroller	Prototype Design
		Designing Prototype	
4	Lec 7-8	Hand on session on Arduino,	
		Programming on Arduino	
5	Lec 9-10	Hand on session Raspberry Pi	
		Programming on Raspberry Pi	
6	Lec 11-12	Flowchart and block diagram of the project	Prototype Design
		Prototype enhancement	
7	Lec 13-14	Unit testing and integration testing with verification	Implementation
		Submission of abstract of paper/report	Report
8	Lec 15-16	Feedback and improvement	Implementation
		Submission of introduction, methodology of	Report
		paper/report	
9	Lec 17-18	Result analysis and performance evaluation	Implementation
		Integration of result analysis in report	Report
10	Lec 19-20	Model of the project	
11	Lec 21-22	System architecture of the paper	Report
12	Lec 23-24	Project update following final timeline	
13	Lec 25-26	Implementation part of the paper	
		Draft of poster presentation	
14	Lec 27-28	Final Project submission	Report
		Final paper/report submission	
		Final poster print and presentation	

CSE-4XO

LEVEL-4 TERM-II

6 hours in a week, 3.00 Cr.

CSE-400 Thesis

Pre-requisite: None

Rationale:

This course motivates to go neck-deep in research, synthesize it, and make a point or look at something in a different way after going through all of it.

Objective:

To study, analyze and provide solutions for the problems of Computer Science and Engineering.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Select, analyze, and classify a particular field to do research.
- 2. Solve real life complex problems
- 3. Explain and describe the time-cost estimation and ethical values.

Mapping of Course Outcomes (CO) and Program Outcomes:

			Р	rog	ran	n O	utc	om	e (I	PO)		
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Select, analyze, and classify a particular field to do research.		\checkmark										
2. Solve real life complex problems.			\checkmark									
3. Explain and describe the time-cost estimation and ethical values.								\checkmark				

3 hours in a week, 3.00 Cr.

CSE-411 VLSI Design

Pre-requisite: None

Rationale:

This course motivates to enhance the ability to design large integrated digital electronic circuits using various logic and circuit design techniques and contribute to the electronics engineering and have a better understanding of different characteristics of such circuits.

Objective:

- 1. To recognize different logical components as well as their interconnection and design various integrated electronic circuits to perform certain digital functions.
- 2. To study and analyze different properties, behaviour and performance metrics of different integrated digital electronic circuits.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnection.
- 2. Select, analyze and create models of moderately sized CMOS circuits that realize specified digital functions.
- 3. Solve and apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect, and to verify the functionality, timing, power, and parasitic effects.
- 4. Have an understanding of the characteristics of CMOS circuit construction and the comparison

Course Content :

VLSI design methodology: Top-down Design Approach, Technology Trends and Design Automation Algorithms; Introduction to CMOS Inverters and Basic Gates; CMOS Fabrication Process and Layout; CMOS Circuit Characteristics and Performance Estimation; Buffer Circuit Design; Introduction Bi-CMOS Circuits; Complex CMOS Gates; CMOS layout design rules, CMOS Building Blocks - Adder, Comparator, Multiplier, Counter, and Shifter; Data Path and Memory structures. Design Methodology and Tools; PLA, FPGA, cell-based and full custom design methods, System-on chip design, Hardware modeling - Hardware Modeling Languages, Logic Networks, State Diagrams, Data-flow and Sequencing Graphs, Behavioral Optimization; Floor Planning and Architecture Design.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the Course		Program Outcome (PO)										-
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Describe mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnection.	\checkmark											
2. Select, analyze and create models of moderately sized CMOS circuits that realize specified digital functions.		\checkmark										
3. Solve and apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect, and to verify the functionality, timing, power, and parasitic effects.			\checkmark									
4. Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes.	\checkmark											

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to VLSI design	
	Lec 2	diodes, BJTs and MOSFETs	
	Lec 3	NMOS and CMOS	
2	Lec 4	Internal Structure of MOSFETs	
	Lec 5	Hierarchical Design	
	Lec 6	Inverter Principles	
3	Lec 7	Threshold Voltage	Class Test 1
	Lec 8	Ids Calculation for Saturation Region	
	Lec 9	Ids Calculation for Resistive Region	
4	Lec 10	Characteristics Curves	
	Lec 11	Characteristics Curves (Contd.)	
	Lec 12	NMOS Inverter with Resistive Load	
5	Lec 13	NMOS Inverter with Enhancement Load	
	Lec 14	Inverter Ratio for NMOS Inverter with	
		Enhancement Load	Class Test 2
	Lec 15	Problems with Enhancement Transistor	
6	Lec 16	NMOS Inverter with Depletion Load	
	Lec 17	Rise Time Calculation	
	Lec 18	Fall Time Calculation	
7	Lec 19	CMOS Characteristics Curve	
	Lec 20	CMOS Power and Transfer Curve	

	Lec 21	Pass Transistor Principles	
8	Lec 22	Pass Transistor NMOS	
	Lec 23	Ratioless NMOS Inverter	
	Lec 24	CMOS Pulse Gate	
9	Lec 25	Buffer Circuits	
	Lec 26	Buffer Chain	
	Lec 27	Super Buffer	Class Test 3
10	Lec 31	Power Dissipation	-
	Lec 32	Static Power Dissipation	
	Lec 33	Dynamic Power Dissipation	
11	11 Lec 28 Short Circuit Power Dissipation		
	Lec 29	CMOS Noise Margin	
	Lec 30	CMOS Noise Margin (Contd.)	
12	Lec 34	NMOS Noise Margin	-
	Lec 35	NMOS NAND and NOR Gates	
	Lec 36	CMOS NAND and NOR Gates	
13	Lec 37	Stick Diagrams	
	Lec 38	Design Rules of Geometric Layout	Class Test 4
	Lec 39	Circuit Design using Stick Diagrams and	Class Test 4
		Geometric Layout	
14	Lec 40	n-well Formation]
	Lec 41	Oxide Layer Formation	
	Lec 42	Cross Section of CMOS	

- Modern 1.Modern VLSI Design: System-on-Chip Design (3rd Edition) Wayne Wolf; Prentice Hall (2002)
- 2. CMOS VLSI Design- A Circuit and System Perspective (3rd Edition) Neil H.E. Weste, David Harris and Ayan Banerjee; Pearson (2009)

CSE-413

3 hours in a week, 3.00 Cr.

Computer Graphics

Pre-requisite: None

Rationale:

Motivates to enhance the ability in order to rapidly visualize, design and modify different types of shapes, structures and images interactively that is absolutely mandatory in the field of engineering and imaging technology.

Objective:

1. To provide a comprehensive introduction to computer graphics leading to the ability

to understand contemporary terminology, progress, issues, and trends.

2. To introduce computer graphics techniques, focusing on 3D modeling, image synthesis, and rendering.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

1. Discuss the algorithmic and mathematical tools used to create a variety of digital images and effects.

2. Demonstrate three main subjects within computer graphics, modeling, rendering, and animation.

3. Select and analyze fundamentals such as digital image representation, color perception, image formation and image processing.

Course Content :

Introduction to computer graphics and its applications; Principles of raster image generation; Light and Color models; Example of a graphics API; Graphics primitives; Graphics hardware; Graphics pipeline; Coordinate convention; Scan conversion; Clipping; Modeling transformations; Viewing transformations; Projection transformations; Polygons and polygon meshes; Curves and surfaces; Hidden lines and surface removal; Introduction to rendering including shading models, textures, ray tracing, and radiosity; Introduction to computer animation and kinematics; Fractals; Graphics programming using OpenGL 4.0 and above.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the Course		Program Outcome (PO)										
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Discuss the algorithmic and												
mathematical tools used to create a	\checkmark											
variety of digital images and effects.												
2. Demonstrate three main subjects within												
computer graphics, modeling, rendering, and				\checkmark								
animation.												
3. Select and analyze fundamentals such as												
digital image representation, color perception,		\checkmark										
image formation and image processing.												

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Computer Graphics	
	Lec 2	Applications of Computer graphics	
	Lec 3	Standard Graphics Primitives	
2	Lec 4	Principles of Raster Image Generation	—
	Lec 5	Graphics Hardware	
	Lec 6	Graphics Pipeline	
3	Lec 7	Coordinate Convention	Class Test 1
	Lec 8	Scan Convention	
	Lec 9	Example of a Graphics API	
4	Lec 10	Introduction to OpenGL	
	Lec 11	Graphics Programming	
	Lec 12	Graphics Programming (Contd.)	
5	Lec 13	Point Clipping	_
	Lec 14	Line Clipping	
	Lec 15	Polygon Clipping	
6	Lec 16	Modeling Transformations	Class Test 2
	Lec 17	Modeling Transformations (Contd.)	
	Lec 18	Modeling Transformations (Contd.)	
7	Lec 19	Viewing Transformations	—
	Lec 20	Viewing Transformations (Contd.)	
	Lec 21	Viewing Transformations (Contd.)	
8	Lec 22	Projection Transformations	
	Lec 23	Projection Transformations (Contd.)	
	Lec 24	Projection Transformations (Contd.)	

9	Lec 25	Polygons	
	Lec 26	Polygons (Contd.)	Class Test 3
	Lec 27	Polygon Meshes	
10	Lec 31	Curves	
	Lec 32	Surfaces	
	Lec 33	Surfaces (Contd.)	
11	Lec 28	Introduction to Shading Models	
	Lec 29	Rendering	
	Lec 30	Hidden Lines and Surface Removal	
12	Lec 34	Introduction to Computer Animation	
	Lec 35	Kinematics	
	Lec 36	Fractals	
13	Lec 37	Textures	
	Lec 38	Ray Tracing	Class Test 4
	Lec 39	Radiosity	
14	Lec 40	Color Perception	
	Lec 41	Color Models	
	Lec 42	Light Models	

- 1. Theory and Problems of Computer Graphics (3rd Edition) Zhigang Xiang, Roy A. Plastock; McGraw Hill (2000)
- 2. Computer Graphics C Version (3rd Edition) Donald Hearn, M. Pauline Baker; Pearson Prentice Hall (2004)
- 3. Computer Graphics Principle and Practice (3rd Edition) Donald Hearn, M. Pauline Baker; Addison-Wesley Professional (2013)

CSE-414

3 hours in alternate week, 0.75 Cr.

Computer Graphics Sessional

Pre-requisite: None

Rationale:

This course motivates to develop and modify 2D and 3D visualization and transformation of any geometric object by using graphics library as well as working with texturing, lighting and coloring of such objects to develop different types of digital images with various effects.

Objective:

- 1. To develop 2D, 3D and animation graphics project using OpenGL graphics library.
- 2. To develop projects using lighting, coloring and texturing techniques.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Achieve a basic idea about OpenGL graphics library.
- 2. Design and develop 2D and 3D graphical geometric objects using OpenGL.
- 3. Learning simple animation, lighting, coloring and texturing.

Course Content :

Introduction to OpenGL, Drawing 2D geometric object, Simple 2D animation and modeling transformation, Drawing 3D geometric object, Viewing transformation and Texturing and lighting.

Teaching-learning and Assessment Strategy:

Lectures, class performances, project, assignment, viva, presentation, quiz.

Assessment Methods & their Weights:

Category	Marks %
Project	40
Quiz	20
Viva / Presentation	10
Class Participation	10
Report	10
Class Assessment	10
Total	100

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Achieve a basic idea about OpenGL graphics library.							\checkmark					
2. Design and develop 2D and 3D graphical geometric objects using OpenGL.						\checkmark						
3. Learning simple animation, lighting, coloring and texturing.									\checkmark			

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to OpenGL (GLSL)	
	Lec 2	Discussion on Project 1	
	Lec 3	Discussion on Project 1 (Contd.)	
2	Lec 4	Programming with OpenGL (GLSL)	
	Lec 5	Lab Assignment	
	Lec 6	Home Assignment	
3	Lec 7	Programming with OpenGL (GLSL)	Class Test 1
		(Contd.)	
	Lec 8	Lab Assignment	
	Lec 9	Home Assignment	
4	Lec 10	Introduction to Animation (with Blender)	
	Lec 11	Animation Project Discussion	
	Lec 12	Animation Project Discussion (Contd.)	
5	Lec 13	Project 1 Demo and Submission	-
	Lec 14	Project 1 Demo and Submission (Contd.)	
	Lec 15	Project 1 Demo and Submission (Contd.)	Class Test 2
6	Lec 16	Discussion on Project 2	Class Test 2
	Lec 17	Discussion on Project 2 (Contd.)	
	Lec 18	Discussion on Project 2 (Contd.)	
7	Lec 19	Discussion on Project 2	
	Lec 20	Discussion on Project 2 (Contd.)	
	Lec 21	Discussion on Project 2 (Contd.)	
8	Lec 22	Animation Project Submission	
	Lec 23	Animation Project Submission (Contd.)	
	Lec 24	Report Submission	
9	Lec 25	Animation Project Submission	1

	Lec 26	Animation Project Submission (Contd.)	Class Test 3
	Lec 27	Report Submission	
10	Lec 31	Project 2 Initial Demo	_
	Lec 32	Project 2 Initial Demo (Contd.)	
	Lec 33	Project 2 Initial Demo (Contd.)	
11	Lec 28	Project 2 Initial Demo	
	Lec 29	Project 2 Initial Demo (Contd.)	
	Lec 30	Project 2 Initial Demo (Contd.)	
12	Lec 34	Project 2 Final Demo and Submission	
	Lec 35	Project 2 Final Demo and Submission	
		(Contd.)	
	Lec 36	Project 2 Final Demo and Submission	
		(Contd.)	
13	Lec 37	Project 2 Final Demo and Submission	_
	Lec 38	Project 2 Final Demo and Submission	Class Test 4
		(Contd.)	
	Lec 39	Project 2 Final Demo and Submission	
		(Contd.)	
14	Lec 40	Quiz	
	Lec 41	Viva	
	Lec 42	Viva (Contd.)	

OpenGL Programming Guide: The Official Guide to Learning OpenGL (8th Edition)

 Dave Shreiner, Graham Sellers, John Kessenich and Bill Licea-Kane; Addison Wesley Professional (2013)

CSE-407 Applied Statistics and Queuing Theory

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

To provide in deep idea of working with data sets and impact of data sets as well as application of queuing models in Computer Science domain.

Objective:

- 1. To discuss the theories of applied statistics.
- 2. To select the practical applications in the field of Information Technology and explain the real life applications of statistics.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss the theories of applied statistics.
- 2. Select the practical applications in the field of Information Technology.
- 3. Explain the real life applications of statistics.

Course Content:

Introduction; Frequency distribution, Mean, median, Mode and other measure of central tendency standard deviation and other measure of dispersion, Moments, Skewness and kurtosis, Elementary probability theory, Characteristics of distributions, elementary sampling theory, Estimation, Hypothesis testing and regression analysis. Probability distribution and expectations, discontinuous probability distribution, e.g. binomial, position and negative binomial. Continuous probability distributions, e.g. normal and exponential. Queuing Theory: Stochastic processes, Discrete time Markov chain and continuous time Markov Chain. birth-death process in queuing. Queuing models: M/M/1,M/M/C,M/G/1,M/D/1,G/M/1 solution of network of queue-closed queuing models and approximate models. Application of queuing models in Computer Science.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Discuss the theories of applied statistics.	\checkmark											
Select the practical applications in the field of Information Technology.												
Explain the real life applications of statistics.						\checkmark						

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2	Introduction Frequency distribution	
2	Lec 3 Lec 4 Lec 5	Central Tendency Mean, median, Mode	

	Lec 6		Class Test 1
3	Lec 7	Standard deviation	
	Lec 8	Dispersion	
	Lec 9		
4	Lec 10	Moments	
	Lec 11	Skewness and kurtosis	
	Lec 12		
5	Lec 13	Elementary probability theory	
	Lec 14	Characteristics of distributions	
6	Lec 15	Elementery compline theory	- Class Test 2
6	Lec 16 Lec 17	Elementary sampling theory	
	Lec 17 Lec 18	Estimation	
7	Lec 18	Hypothesis testing and regression analysis	_
1	Lec 19 Lec 20	Trypotnesis testing and regression analysis	
	Lec 20 Lec 21		
8	Lec 22	Probability distribution	
0	Lec 23	Expectations	
	Lec 24	Expectations	
9	Lec 25	Discontinuous probability distribution	
	Lec 26	Binomial distribution	
	Lec 27	Position and negative binomial distribution	Class Test 3
10	Lec 31	Continuous probability distributions	
	Lec 32	Normal Distribution	
	Lec 33	Exponential Distribution	
11	Lec 28	Queuing Theory: Stochastic processes	
	Lec 29	Discrete time Markov chain	
	Lec 30		
12	Lec 34	Continuous time Markov Chain	
	Lec 35	Birth-death process in queuing	
	Lec 36	1 1 O	
13	Lec 37	Queuingmodels:	Class Test 4
	Lec 38	M/M/1,M/M/C,M/G/1,M/D/1,G/M/1	
	Lec 39	Queue-closed queuing models	
14	Lec 40	Approximate models	
	Lec 41	Application of queuing models	
	Lec 42		

- 1. Applied Statistics Rebecca (Becky) M. (Margaret) Warner
- 2. Applied Statistics for Engineers and Scientists Jay L. Devore and Nicholas R. Farnum
- 3. An Introduction to Queuing Theory U. Narayan Bhat
- 4. Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling William J. Stewart

CSE-417

Engineering Management

Pre-requisite: None

Rationale:

This course motivates engineers to perform under a standard of professional behavior that requires adherence to the highest principles of ethical conduct and manage the resources and decisions effectively. It elevates the profession and raises future standards and imprints on individual moral mindsets and behaviors.

Objective:

- 1. To identify and analyze practical legal problems commonly encountered in computing industry and formulate solutions to some of the legal problems.
- 2. To gain the ability to continue professional development with an understanding of the legal issues, and to critically assess the codes of professional conduct for computer professional.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate awareness of different management and control frameworks and their impact on the Project Management discipline.
- 2. Solve and apply cognitive skills and ability to identify, analysis, and articulate the importance of team building, project risk, and time cost management.
- 3. Using management software to help plan and manage information technology projects.
- 4. Explain the theoretical aspects of 'ethics', 'social norms', 'virtues', 'values', 'legal bindings in professional fields' etc.

Course Content:

Engineering Management: Principles of management, Introduction to Project Management;, Project Integration Management; Project Scope Management; Project Time Management; Project Cost Management; Project Quality Management; Project Human Resource Management; Project Risk Management; MIS: Introduction, Decision Support Systems, MIS in decision making. Concept of Invention, Innovation, and Entrepreneurship.

Engineering Ethics: Introduction to Ethics. Theories of Ethics. Principles of Engineering Ethics. Ethical expectation: Employers and employees, inter-professional relationship, Standards and codes: Fundamental Canons, NSPE codes, IEEE codes of conduct, ACM codes; Institutionalization of ethical conduct. Ethical Dilemmas, Choices (Whistle Blowing), Computer Ethics: Computer Crime and Cyber Security, Privacy and Confidentiality issue in CSE, Legal Framework in CSE-Copyright laws, ICT Act, Right To Information (RTI),

Patents, Royalty etc. Ethical Challenges for CSE Engineers with the advancement of Technology; Case studies related to ethical issues in ICT and other Engineering disciplines.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Demonstrate awareness of different management and control frameworks and their impact on the Project Management discipline.					\checkmark							
2. Solve and apply cognitive skills and ability to identify, analysis, and articulate the importance of team building, project risk, and time cost management.		\checkmark										
3. Using management software to help plan and manage information technology projects.					\checkmark							
4. Explain the theoretical aspects of 'ethics', 'social norms', 'virtues', 'values', 'legal bindings in professional fields' etc.	\checkmark											

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Engineering Management	
	Lec 2	Importance of Engineering Management (Contd.)	
	Lec 3	Importance of Engineering Management	
2	Lec 4	Introduction to Project Management	
	Lec 5	Introduction to Project Management (Contd.)	
	Lec 6	Principles of Management	Class Test 1
3	Lec 7	Project Integration Management	
	Lec 8	Project Scope Management	
	Lec 9	Project Time Management	
4	Lec 10	Project Cost Management	Class Test 2
	Lec 11	Project Quality Management	

	Lec 12	Project Human Resource Management	
		Tiojeet Human Resource Management	
5	Lec 13	Project Communication Management	
	Lec 14	Project Risk Management	
	Lec 15	Project Procurement Management	
6	Lec 16	Introduction to MIS	
	Lec 17	Decision Support System	
	Lec 18	MIS in Decision Making	
7	Lec 19	Development of Communication Skill	
	Lec 20	Concept of Invention and Innovation	
	Lec 21	Concept of Entrepreneurship	
8	Lec 22	Introduction to Ethics	
	Lec 23	Theories of Ethics	
	Lec 24	Principles of Engineering Ethics	
9	Lec 25	Ethical expectation	
	Lec 26	Employers and Employees Relationship	
	Lec 27	Obligation of an Engineer to Clients	Class Test 3
10	Lec 31	Professional Organization: IEEE, ACM	
	Lec 32	Standards and Codes	
	Lec 33	Institutionalization of Ethical Conduct	
11	Lec 28	Ethical Dilemmas	
	Lec 29	Choices (Whistle Blowing)	
	Lec 30	Moral framework for resolving Ethical	
		dilemmas	
12	Lec 34	Computer Crime and Cyber Security Privacy	
	Lec 35	and Confidentiality Issue in CSE	
	Lec 36	Legal Framework in CSE-CopyRight	
		laws	
13	Lec 37	ICT Act	
	Lec 38	Right To Information (RTI)	Class Test 4
	Lec 39	Patents and Royalty	
14	Lec 40	Ethical Challenges for CSE Engineers	
	Lec 41	Case Studies Regarding Ethical Issues in	
	Lec 42	ICT	
		Case Studies Regarding Ethical Issues in	
		ICT	
		ICT	

- 1. Engineering Ethics Concepts and Cases (2nd Edition) Charles E. Harris. Jr., Michael S. Pritchard, Michael J. Rabins; Wadsworth Cengage Learning (2009)
- 2. Introduction to Engineering Ethics (3rd Edition) Schinzinger and Martin; McGraw Hill (2000)

CSE-4XO

Option-II

CSE-4XE

Option-II Sessional

3 hours in a week, 3.00 Cr.

3 hours in alternate week, 0.75 Cr.

Option-I

CSE-419 Advanced Algorithms

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

This course motivates to implement advanced methods of algorithmic design, analysis, and implementation. techniques that include amortization, randomization, word-level parallelism, bit scaling, dynamic programming, network flow, linear programming, fixed-parameter algorithms, approximation algorithms etc. to identify which algorithm will provide efficient result for a specific problem or context.

Objective:

- 1. To study advanced techniques and recognize the resource requirements of various algorithms and their applications to solve and approximate real life problems.
- 2. To analyze the complexity and design necessary parameters of different techniques and methods of advanced algorithms.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

1. Select and explain a variety of algorithms with practical applications and the resource requirements of each.

- 2. Determine the most suitable algorithm for any given task and then apply it to the problem.
- 3. Demonstrate adequate comprehension of the theory of intractability and prove when certain kinds of problems are intractable.

Course Content :

Randomized Algorithms: Las Vegas and Monte Carlo Algorithms; Randomized Data Structures: Skip Lists; Amortized Analysis: Different methods, Applications in Fibonacci Heaps; Lower Bounds: Decision Trees, Information Theoretic Lower Bounds, Adversary Arguments; Approximation Algorithms: Approximation Schemes, Hardness of Approximation; Fixed Parameter Tractability: Parameterized Complexity, Techniques of designing Fixed Parameter Algorithms, Examples; Online Algorithms: Competitive Analysis, Online Paging Problem, kserver Problem; External Memory Algorithms; Advanced Data Structures: Linear and Non-linear Methods.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Select and explain a variety of algorithms with practical applications and the resource requirements of each.		\checkmark										
2. Determine the most suitable algorithm for any given task and then apply it to the problem.			\checkmark									
3. Demonstrate adequate comprehension of the theory of intractability and prove when certain kinds of problems are intractable.				\checkmark								

Week	Lecture	Topics	Class Test	
1	Lec 1	Introduction to Advanced Algorithms		
	Lec 2 Lec 3	Applications of Advanced Algorithms Fundamental Algorithms versus Advanced		
		Algor thms		
2	Lec 4	Lec 4 Randomized Algorithms		
	Lec 5	Class Test 1		
	Lec 6	Las Vegas Algorithm (Contd.)		

3	Lec 7	Monte Carlo Algorithm	
	Lec 8	Monte Carlo Algorithm (Contd.)	
	Lec 9	Randomized Data Structures	
4	Lec 10	Skip Lists	
	Lec 11	Amortized Analysis	
	Lec 12	Amortized Analysis Methods	
5	Lec 13	Amortized Analysis Methods (Contd.)	
	Lec 14	Applications in Fibonacci Heaps	
	Lec 15	Lower Bounds	
6	Lec 16	Decision Trees	- Class Test 2
	Lec 17	Decision Trees (Contd.)	
	Lec 18	Information Theoretic Lower Bounds	
7	Lec 19	Adversary Arguments	
	Lec 20	Approximation Algorithms	
	Lec 21	Approximation Algorithms (Contd.)	
8	Lec 22	Approximation Schemes	
	Lec 23	Approximation Schemes (Contd.)	
	Lec 24	Hardness of Approximation	
9	Lec 25	Fixed Parameter Tractability	
	Lec 26	Parameterized Complexity	
	Lec 27	Parameterized Complexity (Contd.)	
10	Lec 31	Fixed Parameter Algorithms	Class Test 3
	Lec 32	Techniques of Designing Fixed Parameter	
	Lec 33	Algorithms	
		Techniques of Designing Fixed Parameter	
		Algorithms	
11	Lec 28	Online Algorithms	
	Lec 29	Online Algorithms (Contd.)	
	Lec 30	Online Algorithms (Contd.)	
12	Lec 34	Competitive Analysis	
	Lec 35	Online Paging Problem	
	Lec 36	k-server Problem	
13	Lec 37	External Memory Algorithms	
	Lec 38	External Memory Algorithms (Contd.)	Class Test 4
	Lec 39	External Memory Algorithms (Contd.)	
14	Lec 40	Advanced Data Structures	
	Lec 41	Linear Models	
	Lec 42	Non-linear Models	

- 1. An Introduction to Computational Learning Theory Michael J. Kearns , Umesh Vazirani; The MIT Press (1994)
- 2. Algorithm Design (1st Edition) Jon Kleinberg , ÉvaTardos; Pearson (2012)
- 3. Randomized Algorithms (1st Edition) Rajeev Motwani , Prabhakar Raghavan; Cambridge

University Press (1995)

4. Probability and Computing: Randomized Algorithms and Probabilistic Analysis - Michael Mitzenmacher, Eli Upfal; Cambridge University Press (2005)

CSE-421 Basic Graph Theory

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

Provides a framework to model a large set of problems in CS for better mathematical structures and pairwise relations between objects.

Objective:

- 1. To learn the standard uses of graphs as models and the fundamental theory about graphs with a sense of some of its modern applications.
- 2. To formulate algorithms to solve problems with graph theories

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Learn the standard uses of graphs as models and the fundamental theory about graphs with a sense of some of its modern applications.
- 2. Explain and discuss mathematical proofs, including an appreciation of why this is important.
- 3. Formulate algorithms to solve problems with graph theories

Course Content:

Graphs and their applications, Basic graph terminologies, Basic operations on graphs, Graph representations, Degree sequence and graphic sequence, Paths, cycles and connectivity, Network flow, Euler tours, Hamiltonian cycles Ear decomposition, Trees and counting of trees, Distance in graphs and trees, Graceful labeling, Matching and covering, Planar graphs, Digraphs, Graph coloring, Special classes of graphs.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Learn the standard uses of graphs as models and												
the fundamental theory about graphs with a sense												
of some of its modern applications.												
Explain and discuss mathematical proofs,												
including an appreciation of why this is												
important.												
Formulate algorithms to solve problems with												
graph theories			N									

Week	Lecture	Topics	Class Test
1	Lec 1	Graphs and their applications	
	Lec 2		
	Lec 3		
2	Lec 4	Basic graph terminologies	
	Lec 5		
	Lec 6		
3	Lec 7	Basic operations on graphs	Class Test 1
	Lec 8		
	Lec 9		
4	Lec 10	Graph representations	
	Lec 11		
	Lec 12		
5	Lec 13	Degree sequence and graphic sequence	
	Lec 14		
	Lec 15		- Class Test 2
6	Lec 16	Paths	Class Test 2
	Lec 17	Cycles	
	Lec 18	Connectivity	
7	Lec 19	Network flow	7
	Lec 20		
	Lec 21		
8	Lec 22	Euler tours	
	Lec 23	Hamiltonian cycles	
	Lec 24	Ear decomposition	
9	Lec 25	Trees and counting of trees	1

	Lec 26		Class Test 3
	Lec 27		
10	Lec 31	Distance in graphs	
	Lec 32	Distance in trees	
	Lec 33		
11	Lec 28	Graceful labeling	
	Lec 29	Matching and covering	
	Lec 30		
12	Lec 34	Planar graphs	
	Lec 35		
	Lec 36		
13	Lec 37	Digraphs	
	Lec 38	Graph coloring	Class Test 4
	Lec 39		
14	Lec 40	Special classes of graphs	
	Lec 41		
	Lec 42		

- 1. Introduction to graph theory Douglas B West
- 2. Introduction to Graph Theory Robin J. Wilson, Pearson Education Asia

CSE-423 Fault Tolerant System

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

This course motivates to implement a feature on a system that enables a system to continue with its operations even when there is a failure on one part of the system and helps in fault isolation through various failure detection mechanisms.

Objective:

- 1. To detect and isolate faults on a system and design accordingly to achieve a fault tolerant system using different fault tolerance design techniques.
- 2. To test and analyze the faults in order to create a reliable and high performance system.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss, explain and analyze underlying notions of fault tolerance.
- 2. Model reliability of different types of systems.

- 3. Recognize defect avoidance and circumvention.
- 4. Identify methodologies of hardening systems.

Course Content :

Introduction of Fault Tolerant Systems and architectures; Goal and Application of Fault Tolerant computing, Fundamental Definitions,Design techniques to achieve fault Tolerance,Reliability Modeling Using Probability Theory, Fault detection and location in combinational and sequential circuits; Fault test generation for combinational and sequential circuits; Fault test generation for combinational and sequential circuits; Fault modeling; Faults in memory, memory test pattern and reliability;Performance monitoring, self-checking circuits, burst error correction and triple modular redundancy, Defect Avoidance,Defect Circumvention, Shield and Hardening,Yields Enhancement, Degradation Allowance.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Discuss, explain and analyze underlying notions of fault tolerance		\checkmark										
2. Model reliability of different types of												
systems.			\checkmark									
3. Recognize defect avoidance and circumvention.		\checkmark										
4. Identify methodologies of hardening systems.				\checkmark								

Mapping of Course Outcomes (CO) and Program Outcomes:

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Fault Tolerant Systems	
	Lec 2	Goals of Fault Tolerant Computing	
	Lec 3	Applications of Fault Tolerant Computing	
2	Lec 4	Fundamental Definitions	
	Lec 5	Design Techniques to Achieve Fault	
	Lec 6	Tolerance	
		Architecture of Fault Tolerant System	Class Test 1
3	Lec 7	Reliability Modeling using Probability Theory	Class Test I
	Lec 8	Reliability Modeling using Probability Theory	
	Lec 9	(Contd.)	

		Fault Detection and Location	
4	Lec 10	Fault Detection and Location in Sequential	
	Lec 11	Circuit	
	Lec 12	Fault Detection and Location in	
		Combinational Circuit	
		Fault Modeling	
5	Lec 13	Fault Test	
	Lec 14	Fault Test Generation for Sequential Circuit	
	Lec 15	Fault Test Generation for Combinational	Class Test 2
		Circuit	
6	Lec 16	Faults in Memory	
	Lec 17	Memory Test Pattern	
	Lec 18	Memory Test Reliability	
7	Lec 19	Performance Monitoring	
	Lec 20	Performance Monitoring (Contd.)	
	Lec 21	Self-checking circuits	
8	Lec 22	Errors	
	Lec 23	Error Types	
	Lec 24	Error Types (Contd.)	
9	Lec 25	Error Correction	
	Lec 26	Burst Error	
	Lec 27	Burst Error Correction	Class Test 3
10	Lec 31	N-modular Redundancy	
	Lec 32	Triple Modular Redundancy	
	Lec 33	Triple Modular Redundancy (Contd.)	
11	Lec 28	Defect	
	Lec 29	Defect Types	
	Lec 30	Defect Avoidance	
12	Lec 34	Defect Avoidance (Contd.)	
	Lec 35	Defect Circumvention	
	Lec 36	Defect Circumvention (Contd.)	
13	Lec 37	Hardening Systems	
	Lec 38	Methods of Hardening	Class Test 4
	Lec 39	Shield Hardening (Contd.)	
14	Lec 40	Yields Enhancement	
	Lec 41	Yields Enhancement (Contd.)	
	Lec 42	Degradation Allowance	

Design and Analysis of Fault Tolerant Digital System (1st Edition) - Barry W. Johnson; Addison Wesley (1989)

- 2. Dependable Computing: A Multilevel Approach Behrooz Parhami
- 3. Fault-Tolerant Systems (1st Edition) Israel Koren, C. Mani Krishna; Morgan Kauffman (2010)

CSE-425 Basic Multimedia Theory

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

This course motivates to study the architecture, different standards of compressing and coding a multimedia document; database, network and operating system issues, traffic and service issues, security issues and hence apply this knowledge to implement different multimedia applications.

Objective:

- 1. To apply different techniques and methods for developing secured and high quality multimedia applications for different context.
- 2. To recognize and analyze different issues storing, indexing, resource management, scheduling, security etc. of multimedia applications.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss indexing and storing multimedia data for multimedia document.
- 2. Explain disk placement, disk scheduling, searching techniques for multimedia document.
- 3. Discover and apply the knowledge acquired in developing multimedia applications audio and video conferencing, video on demand, and voice over IP.

Course Content :

Multimedia systems - introduction; Coding and compression standards; Architecture issues in multimedia; Operating systems issues in multimedia - real-time OS issues, synchronization, interrupt handling; Database issues in multimedia - indexing and storing multimedia data, disk placement, disk scheduling, searching for a multimedia document; Networking issues in multimedia - Quality-of-service guarantees, resource reservation, traffic specification, shaping, and monitoring, admission control; Multicasting issues; Session directories; Protocols for controlling sessions; Security issues in multimedia-digital water making, partial encryption schemes for video streams; multimedia applications – audio and video conferencing, video on demand, voice over IP.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Discuss indexing and storing multimedia data for multimedia document.	\checkmark											
2. Explain disk placement, disk scheduling,												
searching techniques for multimedia document.												
document.			\checkmark									
3. Discover and apply the knowledge												
acquired in developing multimedia applications – audio and video conferencing,												
video on demand, and voice over IP.				\checkmark								

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Multimedia Systems	
	Lec 2	Introduction to Multimedia Systems (Contd.)	
	Lec 3	Application of Multimedia Systems	
2	Lec 4	Coding Standards	
	Lec 5	Compression Standards	
	Lec 6	Architecture Issues in Multimedia	
3	Lec 7	Architecture Issues in Multimedia (Contd.)	Class Test 1
	Lec 8	Operating System Issues in Multimedia	
	Lec 9	Real-time OS Issues	
4	Lec 10	Synchronization Issues	
	Lec 11	Interrupt Handling	
	Lec 12	Interrupt Handling (Contd.)	
5	Lec 13	Database Issues in Multimedia	
	Lec 14	Indexing Multimedia Data	
	Lec 15	Storing Multimedia Data	Class Test 2
6	Lec 16	Storing Multimedia Data (Contd.)	
	Lec 17	Disk Placement	
	Lec 18	Disk Scheduling	
7	Lec 19	Disk Scheduling (Contd.)	
	Lec 20	Searching for a Multimedia Document	
	Lec 21	Networking Issues in Multimedia	
8	Lec 22	Quality-of-Service guarantees	
	Lec 23	Resource Reservation	
	Lec 24	Traffic Specification	

9	Lec 25	Shaping	
	Lec 26	Monitoring	Class Test 3
	Lec 27	Admission Control	
10	Lec 31	Multicasting Issues	
	Lec 32	Multicasting Issues (Contd.)	
	Lec 33	Session Directories	
11	Lec 28	Protocols for Controlling Sessions	
	Lec 29	Protocols for Controlling Sessions (Contd.)	
	Lec 30	Security Issues in Multimedia	
12	Lec 34	Security Issues in Multimedia (Contd.)	
	Lec 35	Digital Water Making	
	Lec 36	Partial Encryption Schemes for Video Streams	
13	Lec 37	Multimedia Applications	
	Lec 38	Audio Conferencing	Class Test 4
	Lec 39	Video Conferencing	
14	Lec 40	Video on Demand	
	Lec 41	Voice over IP	
	Lec 42	Voice over IP (Contd.)	

1. Multimedia: Computing, Communications & Applications (US Edition) - Ralf Steinmetz, Klara Nahrstedt; Prentice Hall (1995)

CSE-427 Digital Image Processing Pre-requisite: None

3 hours in a week, 3.00 Cr.

Rationale:

Introduce the fundamentals of image processing and manipulation of television, medical imaging modalities such as X-ray or ultrasound, photography, security, astronomy and remote sensing.

Objective:

1. To describe image formation and the role human visual system plays in perception of gray and color image data.

- 2. To explain the basic elements and applications of image processing.
- 3. To select and analyze image sampling and quantization requirements and implications.
- 4. To perform Gray level transformations for Image enhancement.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe image formation and the role of human visual system in perception of gray and color image data.
- 2. Explain the basic elements and applications of image processing.
- 3. Select and analyze image sampling and quantization requirements and implications.
- 4. Perform Gray level transformations for Image enhancement.

Course Content :

Digital image fundamentals: visual perception, Light and Electromagnetic Spectrum, Image Sensing and Acquisition, Image Sampling and Quantization, Some basic relationships between pixels, Linear and Nonlinear operations; image transforms: First Fourier Transform (FFT), Discrete Cosine Transform (DCT), Karhunen and Loeve Transform (KLT), Wavelet transform and sub-band decomposition; image enhancement in the frequency domain and image restoration techniques, image compression techniques, image compression standards: JPEG,MPEG, H.261, and H.263, Image Segmentation.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the Course		Program Outcome (PO)										
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Describe image formation and the												
role of human visual system in												
perception of gray and color image	•											
data.												
Explain the basic elements and	2/											
applications of image processing.	v											
Select and analyze image sampling and												
quantization requirements and		\checkmark										
implications.												
Perform Gray level transformations for			./									
Image enhancement.			V									

Week	Week Lecture Topics					
1	Lec 1	Digital image fundamentals				
	Lec 2	Visual perception				
	Lec 3	Light and Electromagnetic Spectrum				
2	Lec 4	Image Sensing and Acquisition				
	Lec 5	Image Sampling and Quantization				
	Lec 6	Basic relationships between pixels				
3	Lec 7	Linear and Nonlinear operations	Class Test 1			
	Lec 8	Image transforms				
	Lec 9	First Fourier Transform (FFT)				
4	Lec 10	Discrete Cosine Transform (DCT)				
	Lec 11	Karhunen and Loeve Transform (KLT)				
	Lec 12					
5	Lec 13		-			
	Lec 14	Wavelet Transform				
	Lec 15					
6	Lec 16		- Class Test 2			
	Lec 17	Sub-Band Decomposition				
	Lec 18	1 I				
7	Lec 19	Image restoration technique	-			
	Lec 20	Properties of Noise				
	Lec 21	Estimation of Noise Parameters				
8	Lec 22	Filters				
	Lec 23	Mean Filter				
	Lec 24	Bandpass and Band reject Filter				
		Notch Filter and Inverse Filter				
9	Lec 25	Color Image Processing	Class Test 3			
	Lec 26	Fundamentals, Models				
	Lec 27	Smoothing and Sharpening				
10	Lec 31	Image compression techniques	-			
-	Lec 32	Coding Redundancy				
	Lec 33	Measuring Image Information				
11	Lec 28	Image compression standards				
	Lec 29	JPEG, MPEG, H.261, and H.26				
	Lec 30	-, -, -,				
12	Lec 34	Image Enhancement in the Frequency	-			
	Lec 35	Domain	Class Test 4			
	Lec 36					

13	Lec 37	Image Segmentation	
	Lec 38	Detection of Discontinuities	
	Lec 39	Thresholding	
14	Lec 40	Edge Linking	
	Lec 41	Boundary Detection	
	Lec 42		

1. Digital Image Processing (3rd/2nd Edition) - R. C. Gonzalez and R.E. Woods; Pearson Prentice Hall (2009)

CSE-429

3 hours in a week, 3.00 Cr.

Data and Network Security

Pre-requisite: None

Rationale:

To gather brief review of computer crimes and causes, Internet, strategies, crime prevention, security.

Objective:

- 1. To understand the development of security, traditional encryption, security attacks and the fundamental security objectives
- 2. To determine and analyze the security objectives, attacks, and models, so is able to recognize the security requirements in real-life cases.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Understand the development of security, traditional encryption, security attacks and the fundamental security objectives
- 2. Determine the security objectives, attacks, and models, so is able to recognize the security requirements in real-life cases.
- 3. Analyze the design and implementation issues of a real-life security solution.

Course Content :

Overview, Symmetric cipher, Classical encryption technique, Block cipher and the data encryption standard (DES), Triple DES, Introduction to finite fields, Advanced Encryption Standard, Contemporary Symmetric Ciphers, confidentiality using symmetric encryption public, Key encryption and Hash functions, Public-key Cryptography, RSA algorithm, Key management, Diffie-Hellman key exchange, Other Public Key Cryptosystem, Message Authentication and Hash function, Hash Algorithm, Digital Signatures and Authentication protocols, Network Security practice, Authentication application, Wireless Network Security, Electrical Mail security, IP security, Web security, System security, Intruders, Malicious software and Firewall, Legal and Ethical Aspects.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:	
---	--

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Understand the development of security, traditional encryption, security attacks and the fundamental security objectives	V											
Determine the security objectives, attacks, and models, so is able to recognize the security requirements in real-life cases.		٧										
Analyze the design and implementation issues of a real-life security solution.			٧									

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction	
	Lec 2	Symmetric cipher	
	Lec 3		
2	Lec 4	Classical encryption technique	
	Lec 5	Block cipher	
	Lec 6		Class Test 1
3	Lec 7	Data Encryption Standard (DES)	

	Lec 8	Triple DES	
	Lec 9		
4	Lec 10	Introduction to finite fields	
	Lec 11	Advanced Encryption Standard	
	Lec 12		
5	Lec 13	Contemporary Symmetric Ciphers	
	Lec 14	Symmetric Encryption	
	Lec 15		Class Test 2
6	Lec 16	Key Encryption	Class Test 2
	Lec 17	Hash Functions	
	Lec 18		
7	Lec 19	Public-key Cryptography	
	Lec 20	RSA Algorithm	
	Lec 21	Key Management	
8	Lec 22	Diffie-Hellman key exchange	
	Lec 23	Public Key Cryptosystem	
	Lec 24		
9	Lec 25	Message Authentication and Hash function	
	Lec 26	Hash Algorithm	
	Lec 27		Class Test 3
10	Lec 31	Digital Signatures	
	Lec 32	Authentication protocols	
	Lec 33		
11	Lec 28	Network Security practice	
	Lec 29	Authentication application	
	Lec 30	Wireless	
12	Lec 34	Network Security	
	Lec 35	Electrical Mail security	
	Lec 36	IP security	
13	Lec 37	Web security	
	Lec 38	System security	Class Test 4
	Lec 39	Intruders	
14	Lec 40	Malicious software and Firewall	
	Lec 41	Legal and Ethical Aspects.	
	Lec 42		

- 1. Cryptography and Network Security William Stallings;
- 2. Cryptography and Network Security- Behrouz A. Forouzan;

3 hours in a week, 3.00 Cr.

CSE-431 Object Oriented Software Engineering

Pre-requisite: None

Rationale:

This course provides in depth concepts, properties, relationships of object driven software, exception handling and reusable library.

Objective:

- 1. To describe various O-O concepts, their properties, relationships along with model/ represent considering constraints.
- 2. To design, develop and explain various modeling techniques to model different perspectives of Object-Oriented Software Design.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe various O-O concepts along with their applicability contexts.
- 2. Identify domain objects, their properties, and relationships among them.
- 3. Model/ represent domain constraints on the objects and (or) on their relationships.
- 4. Develop design solutions for problems on various O-O concepts.

Course Content:

The object-oriented approach within the context of software engineering, the language, basic (procedural) elements of language: what an Eiffel program is, what the instruction set is, and how to declare and use entities (variables) and routines; The concepts underlying the object-oriented approach: modularity, inheritance, and dynamic binding, case study from the management information-system domain; Environment matters: system configuration, interfacing with external software, and garbage collection. Advanced issues involving exception handling, repeated inheritance, typing problems, and parallelism; object-oriented software engineering process, concentrating on specific guidelines facilitate the translation OOAD to a maintainable Addresses verification and validation (V&V) issues of Eiffel software systems built in a software engineering context; Building reusable libraries; The building of a parallel linear algebra library (Paladin).

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Describe various O-O concepts along with their applicability contexts.	\checkmark											
Identify domain objects, their properties, and relationships among them.												
Model/ represent domain constraints on the objects and (or) on their relationships.		\checkmark										
Develop design solutions for problems on various O-O concepts.			\checkmark									
Explain and select various modeling techniques to model different perspectives of Object- Oriented Software Design.	\checkmark											

Week	Lecture	Topics	Class Test
1	Lec 1	Object-oriented approach	
	Lec 2		
	Lec 3		
2	Lec 4	Basic (procedural) elements of language	
	Lec 5		
	Lec 6		
3	Lec 7	Eiffel program	Class Test 1
	Lec 8	Instruction set	
	Lec 9		
4	Lec 10	Concepts underlying the O-O approach	
	Lec 11	Modularity	
	Lec 12		
5	Lec 13	Inheritance	
	Lec 14	Dynamic binding	
	Lec 15	Management information-system domain	– Class Test 2
6	Lec 16	Environment matters: system configuration,	Class Test 2
	Lec 17		
	Lec 18		
7	Lec 19	Interfacing with external software	
	Lec 20	Garbage collection.	
	Lec 21		

8	Lec 22	Advanced issues involving exception handling	
	Lec 23		
	Lec 24		
9	Lec 25	Repeated inheritance	
	Lec 26	Typing problems	
	Lec 27		Class Test 3
10	Lec 31	Parallelism	
	Lec 32	O-O software engineering process	
	Lec 33		
11	Lec 28	OOAD to a maintainable Addresses	
	Lec 29	verification	
	Lec 30		
12	Lec 34	OOAD to Address validation (V&V)	
	Lec 35	Issues of Eiffel software systems	
	Lec 36		
13	Lec 37	Building reusable libraries	
	Lec 38		Class Test 4
	Lec 39		
14	Lec 40	The building of a parallel linear algebra	
	Lec 41	library (Paladin).	
	Lec 42		

- 1. Object-Oriented Software Engineering Stephen Schach
- 2. Object Oriented Software Engineering: A Use Case Driven Approach Ivar Jacobson
- 3. Object-Oriented Software Engineering: Practical Software Development using UML and Java Timothy Lethbridge, Robert Laganiere, Robert Laganiere

CSE-433 Artificial Neural Networks and Fuzzy Systems

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

Reasoning complex situations by the artificial agents with the help of neural network and fuzzy system provides better performance.

Objective:

- 1. To develop the skills on neural network theory and fuzzy logic theory and explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers.
- 2. To design and implement basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Develop the skills to gain a basic understanding of neural network theory and fuzzy logic theory.
- 2. Explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers.
- 3. Select and implement a basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application.

Course Content:

Biological nervous system: the brain and neurons, Introduction to artificial neural network and fuzzy systems, Theory and application of Artificial neural networks and fuzzy logic; Multi-layer perception: Back propagation algorithm, Self organization map, Radial basis network, Hop field network, Recurrent network, Fuzzy set theory, Failing Adaptive Linear (ADALINE) and Multiple Adaptive Linear (MADALINE) networks, Generating internal representation, Cascade correlation and counter propagation networks, Higher order and bi-directional associated memory, Lyapunov energy function, attraction basin, Probabilistic updates: simulated annealing, Boltzmann machine, Adaptive Resonance Theory (ART) network. ARTI. ART2. Fuzzy ART mapping (ARTMAF) networks. Kohonen feature .l\ Learning Vector Quantization (LVQ) networks, Logic control: Adaptive fuzzy neural network; Genetic algorithm and evolution compacting, Applications to control; Pattern recognition; Nonlinear system modeling, Speech and image processing.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Develop the skills to gain a basic understanding of neural network theory and fuzzy logic theory												
Explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers												

Mapping of Course Outcomes (CO) and Program Outcomes:

or controllers.							
Select and implement a basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application.		\checkmark					

Week	Lecture	Topics	Class Test
1	Lec 1	Biological nervous system	
	Lec 2	Brain and neurons	
	Lec 3		
2	Lec 4	Introduction to artificial neural network and	
	Lec 5	fuzzy systems	Class Test 1
	Lec 6		
3	Lec 7	Adaption of Artificial neural networks	
	Lec 8	Fuzzy logic	
	Lec 9		
4	Lec 10	Multi-layer perception	
	Lec 11	Back propagation algorithm	
	Lec 12	Self-organization map	
5	Lec 13	Radial basis network	
	Lec 14	Hop field network	
	Lec 15	Recurrent network	Class Test 2
6	Lec 16	Fuzzy set theory	
	Lec 17	Failing Adaptive Linear (ADALINE)	
	Lec 18	Multiple Adaptive Linear (MADALINE)	
7	Lec 19	Generating internal representation	
	Lec 20	Cascade correlation	
	Lec 21	Counter propagation networks	
8	Lec 22	Higher order	
	Lec 23	bi-directional associated memory	
	Lec 24	Lyapunov energy function	
9	Lec 25	Attraction basin	
	Lec 26	Probabilistic updates: simulated annealing	
	Lec 27	Boltzmann machine	Class Test 3
10	Lec 31	Adaptive Resonance Theory (ART) network.	
	Lec 32	ARTI. ART2.	
	Lec 33		
11	Lec 28	Fuzzy ART mapping (ARTMAF)	

	Lec 29	Kohonen feature	
	Lec 30	LVQ networks	
12	Lec 34	Logic control	Class Test 4
	Lec 35	Adaptive fuzzy neural network	
	Lec 36		
13	Lec 37	Genetic algorithm	
	Lec 38	Evolution compacting	
	Lec 39	Applications to control	
14	Lec 40	Pattern recognition	
	Lec 41	Nonlinear system modeling	
	Lec 42	Speech and image processing.	

- 1. Neural Networks and Fuzzy Systems Shigeo Abe
- 2. Introduction to Artificial Neural Systems Jacek M. Zurada
- 3. Artificial neural systems: foundations, paradigms, applications, and implementations Patrick K. Simpson

CSE-435 Distributed Algorithms

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

Execution of algorithms in parallel and distributed settings along with correctness, reliability, security, and performance is very vital for computing.

Objective:

- 1. To acquire concepts of models, limitations, and fundamentals of message passing and shared memory concurrency, and apply this understanding to example systems and algorithms.
- 2. Adapt, design algorithms and distinguish for execution in parallel and distributed settings along with correctness, reliability, security, and performance.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss and account for models, limitations, and fundamental concepts in the area of message passing and shared memory concurrency, and apply this understanding to example systems and algorithms.
- 2. Adapt, and design algorithms for execution in parallel and distributed settings.
- 3. Distinguish the algorithms for correctness, reliability, security, and performance.

Course Content:

Models of distributed computing, Synchrony, communication and failure concerns, Synchronous message-passing distributed systems, Algorithms in systems with no failures - Leader Election and Breadth-First Search algorithms, The atomic commit problem, Consensus problems - the Byzantine Generals Problem, Asynchronous message-passing distributed systems, Failure detectors, Logical time and vector clocks, Routing algorithms.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Discuss and account for models, limitations, and												
fundamental concepts in the area of message												
passing and shared memory concurrency, and												
apply this understanding to example systems and												
algorithms.												
Adapt, and design algorithms for execution in												
parallel and distributed settings.			v									
Distinguish the algorithms for correctness,												
reliability, security, and performance.		v										

Week	Lecture	Topics	Class Test
1	Lec 1	Models of distributed computing	
	Lec 2		
	Lec 3		
	Lec 4	Synchrony communication	
	Lec 5		
	Lec 6		Class Test 1
3	Lec 7	Failure concerns	

	Lec 8		
	Lec 9		
4	Lec 10	Synchronous message-passing	
	Lec 11		
	Lec 12		
5	Lec 13	Distributed systems	
	Lec 14		
	Lec 15		Class Test 2
6	Lec 16	Algorithms in systems with no failures - Leader	
	Lec 17	Election	
	Lec 18		
7	Lec 19		
	Lec 20	Breadth-First Search algorithms	
	Lec 21		
8	Lec 22	The atomic commit problem	
	Lec 23		
	Lec 24		
9	Lec 25	Consensus problems - the Byzantine	
	Lec 26	Generals Problem	
	Lec 27		Class Test 3
10	Lec 31	Asynchronous message-passing of distributed systems	
	Lec 32		
	Lec 33		
11	Lec 28	Failure detectors I	
	Lec 29		
	Lec 30		
12	Lec 34	Failure detectors II	
	Lec 35		
	Lec 36		
13	Lec 37	Logical time	
	Lec 38	Vector clocks	Class Test 4
	Lec 39		
14	Lec 40	Routing algorithms	
	Lec 41		
	Lec 42		

- Distributed Systems S. Mullender (ed.), Addison-Wesley
 Introduction to Distributed Algorithms G. Tel. Cambridge Univ. Press

3 hours in a week, 3.00 Cr.

CSE-437 Bioinformatics

Pre-requisite: None

Rationale:

This course motivates to generate all sorts of data that involves generating protein sequence and predicting protein domains to even producing 3D structures of proteins from computer based databases of biological information for bioinformatics experiments.

Objective:

- 1. To be able to work with the vast amount of biomedical and genomic data using bioinformatics tools.
- 2. To analyze the properties of different genome sequences and their alignment from databases using dynamic programming.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Explain and learn the knowledge of basic topics regarding bioinformatics.
- 2. Define and describe the contents and properties of the most important bioinformatics databases and searches.
- 3. Enhance the major steps in pairwise and multiple sequence alignment, explain the principle for, and execute pairwise sequence alignment by dynamic programming.

Course Content :

Molecular biology basics: DNA, RNA, genes, and proteins; Genome Rearrangements. Sequence similarity, homology, and alignment. Pair-wise alignment: scoring model, dynamic programming algorithms, heuristic alignment, and pair-wise alignment using Hidden Markov Models. Combinatorial pattern matching: Database Search, Rapid String Matching, BLAST, FASTA; Multiple alignment: scoring model, local alignment gapped and un-gapped global alignment. Motif finding: motif models, finding occurrence of known sites, discovering new sites. Gene Finding: predicting reading frames, maximal dependence decomposition. Analysis of DNA microarray data using hierarchical clustering, model-based clustering, expectation-maximization clustering, Bayesian model selection.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Explain and learn the knowledge of basic topics regarding bioinformatics.	\checkmark											
2. Define and describe the contents and												
properties of the most important												
bioinformatics databases and searches.	\checkmark											
3. Enhance the major steps in pairwise and												
multiple sequence alignment, explain the												
principle for, and execute pairwise sequence		,										
alignment by dynamic programming.		\checkmark										

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Bioinformatics	
	Lec 2	Applications of Bioinformatics	
	Lec 3	Molecular Biology Basics	
2	Lec 4	DNA and RNA	
	Lec 5	Genes	
	Lec 6	Proteins	
3	Lec 7	Genome Rearrangements	Class Test 1
	Lec 8	Sequence Similarity	
	Lec 9	Homology	
4	Lec 10	Alignment	
	Lec 11	Pair-wise Alignment Scoring Model	
	Lec 12	Pair-wise Alignment Scoring Model (Contd.)	
5	Lec 13	Dynamic Programming Algorithms	
	Lec 14	Dynamic Programming Algorithms (Contd.)	
		Heuristic Alignment	
	Lec 15		Class Test 2
6	Lec 16	Hidden Markov Model	
	Lec 17	Pair-wise Alignment using HMM	
	Lec 18	Pair-wise Alignment using HMM (Contd.)	
7	Lec 19	Combinatorial Pattern Matching	
	Lec 20	Database Search	
	Lec 21	Rapid String Matching	
8	Lec 22	BLAST	

	Lec 23	FASTA	
	Lec 24	Multiple Alignment Scoring Model	
9	Lec 25	Local Alignment	
	Lec 26	Gapped Global Alignment	Class Test 3
	Lec 27	Un-gapped Global Alignment	
10	Lec 31	Motif Finding: Motif Models	
	Lec 32	Finding Occurence of Known Sites	
	Lec 33	Discovering New Sites	
11	Lec 28	Gene Finding	
	Lec 29	Predicting Reading Frames	
	Lec 30	Maximal Dependence Decomposition	
12	Lec 34	Analysis of DNA Microarray Data	
	Lec 35	Hierarchical Clustering	
	Lec 36	Hierarchical Clustering (Contd.)	
13	Lec 37	Model Based Clustering	
	Lec 38	Model Based Clustering (Contd.)	Class Test 4
	Lec 39	Expectation Maximization Clustering	
14	Lec 40	Expectation Maximization Clustering (Contd.)	
		Bayesian Model Selection	
	Lec 41	Bayesian Model Selection (Contd.)	
	Lec 42		

1. 1. An Introduction to Bioinformatics Algorithm (1st Edition)- Neil C. Jones, Pavel A. Pevzner; The MIT Press (2004)

CSE-439 Robotics

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

This course introduces the fundamentals of robotics design and development, the principles of robot kinematics, dynamics, motion planning, trajectory generation and control as well as plan and research complete robots for various industrial applications.

Objective:

1. To explain the basics of robotic systems, robot design, development process and their vast

applications.

2. To specify and analyze the simulation, modeling and drawbacks of a robotic system for an interactive complex environment.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Explain with the concept development and key components of robotics technologies.
- 2. Solve problems in spatial coordinate representation and spatial transformation, robot locomotion design, kinematics, motion control, localization and mapping, navigation and path planning.
- 3. Design and implement a robotic project on a physical mobile robot platform, with tasks involving project specification, algorithm design, software programming, simulation and modeling, control and obstacle avoidance in a complex and interactive environment.

Course Content :

Introduction to robotics, overview of robot mechanisms, dynamics, and intelligent controls, planar and spatial kinematics, and motion planning; mechanism design for manipulators and mobile robots, multi-rigid body dynamics, 3D graphic simulation; control design, actuators, and sensors; wireless networking, task modeling, human-machine interface, and embedded software mechanical design, rigidbody velocity, Jacobean, inverse kinematics, redundant and parallel robots, trajectory control, face control and haptics, Micro and Nano-robotics, mobile robots. Human-robot interaction, Multiagents, fault diagnosis.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Explain with the concept development and key components of robotics technologies.	\checkmark											
Solve problems in spatial coordinate representation and spatial transformation, robot locomotion design, kinematics, motion control, localization and mapping, navigation and path planning.		\checkmark										
Design and implement a robotic project on a physical mobile robot platform, with tasks			\checkmark									

involving project specification, algorithm						
design, software programming, simulation and						
modeling, control and obstacle avoidance in a						
complex and interactive environment.						

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Robotics	
	Lec 2	Applications of Robotics	
	Lec 3	Evolution of Robotics	
2	Lec 4	Overview of Robot Mechanisms	
	Lec 5	Overview of Robot Dynamics	
	Lec 6	Overview of Robot Intelligent Controls	
3	Lec 7	Spatial Descriptions	Class Test 1
	Lec 8	Transformations	
	Lec 9	Introduction to Kinematics	
4	Lec 10	Planar Kinematics	
	Lec 11	Spatial Kinematics	
	Lec 12	Motion Planning	
5	Lec 13	Mechanism Design for Manipulators	
	Lec 14	Mechanism Design for Mobile Robots	
	Lec 15	Mechanism Design for Mobile Robots	
		(Contd.)	Class Test 2
6	Lec 16	Manipulator Kinematics	
	Lec 17	Inverse Manipulator Kinematics	
	Lec 18	Introduction to Dynamics	
7	Lec 19	Manipulator Dynamics	_
	Lec 20	Trajectory Generation	
	Lec 21	Multi-rigid body Dynamics	
8	Lec 22	Linear Control of manipulators	
	Lec 23	Non-Linear Control Manipulators	
	Lec 24	Force Control of Manipulators	
9	Lec 25	3D Graphic Simulation	
	Lec 26	3D Graphic Simulation (Contd.)	
	Lec 27	3D Graphic Simulation (Contd.)	Class Test 3
10	Lec 31	Control Design	1
-	Lec 32	Actuators	
	Lec 33	Sensors	
11	Lec 28	Task Modeling, Face Control and Haptics	
	Lec 29	Human-Machine Interface	

	Lec 30	Embedded Software Mechanical Design	
12	Lec 34	Jacobean Kinematics	Class Test 4
	Lec 35	Inverse Kinematics	
	Lec 36	Redundant and Parallel Robots	
13	Lec 37	Micro Robotics	
	Lec 38	Nano-Robotics	
	Lec 39	Mobile Robots	
14	Lec 40	Human-robot interaction	
	Lec 41	Multiagents	
	Lec 42	Fault Diagnosis	

- Introduction to Robotics: Analysis, Control, Applications (2nd Edition) Saeed B. Niku; Wiley (2010)
- Introduction to Robotics: Mechanics and Control (3rd Edition) John J. Craig; Pearson (2004)

CSE-441 Machine Learning

3 hours in a week, 3.00 Cr.

Pre-requisite: NONE

Rationale:

Machine learning provides appropriate learning algorithm to best suit the current need and enhance the learning parameters for maximum performance.

Objective:

- 1. To learn paradigms in different environmental setting and apply the appropriate learning algorithm to best suit the current need.
- 2. To enhance the learning parameters to achieve maximum performance.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss the different learning paradigms in different environmental setting
- 2. Select and apply the appropriate learning algorithm to best suit the current need.
- 3. Enhance the learning parameters to achieve maximum performance.

Course Content:

Introduction to Machine Learning; Regression analysis: Logistic Regression, Linear Regression; Supervised and Unsupervised learning; Bayesian Learning; Decision Tree Learning; Rule based learning; Instance based learning; Neural Nets; Support Vector Machine; Genetic Algorithms; Reinforcement learning; Ensemble learning; Hidden Markov Models; Maximum Likelihood Estimates, Parameter Estimation; Computational learning theory.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program			n O	Outcome (PO)							
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Discuss the different learning paradigms in different environmental setting.	\checkmark											
Select and apply the appropriate learning algorithm to best suit the current need.		\checkmark										
Enhance the learning parameters to achieve maximum performance.		\checkmark										

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Machine Learning	
	Lec 2		
	Lec 3		
2	Lec 4	Regression analysis	
	Lec 5	Logistic Regression	
	Lec 6		
3	Lec 7	Linear Regression	Class Test 1
	Lec 8		
	Lec 9		
4	Lec 10	Supervised learning	
	Lec 11	Unsupervised learning	
	Lec 12		
5	Lec 13	Bayesian Learning	
	Lec 14	Decision Tree Learning	Class Test 2
	Lec 15		
6	Lec 16	Rule based learning	
	Lec 17	Instance based learning	
	Lec 18		

7	Lec 19	Neural Nets	
	Lec 20		
	Lec 21		
8	Lec 22	Support Vector Machine	
	Lec 23	Genetic Algorithms	
	Lec 24		
9	Lec 25	Reinforcement learning	
	Lec 26		
	Lec 27		Class Test 3
10	Lec 31	Ensemble learning	
	Lec 32		
	Lec 33		
11	Lec 28	Hidden Markov Models	
	Lec 29		
	Lec 30		
12	Lec 34	Maximum Likelihood Estimates	
	Lec 35		
	Lec 36		
13	Lec 37	Parameter Estimation	
	Lec 38		Class Test 4
	Lec 39		
14	Lec 40	Computational learning theory	
	Lec 41		
	Lec 42		

- 1. Pattern Recognition and Machine Learning Christopher M. Bishop; Springer
- 2. Machine Learning Tom Mitchell, McGraw Hill
- 3. Pattern Recognition Sergios Theodoridis and Konstantinos Koutroumbas; Elsevier Inc.

Option-II

CSE-443 Pattern Recognition

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

This course motivates to recognize patterns, regularities and also irregularities in data by using various pattern recognition algorithms and techniques to find useful information for science, business, organizational decisions as well as contributing to the field of machine learning, data mining and artificial intelligence.

Objective:

- 1. To provide a comprehensive introduction to pattern recognition techniques leading to the ability to understand contemporary terminology, progress, issues, and trends.
- 2. To specify sectors and context where the application of pattern recognition can provide a fruitful solution.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Identify areas where pattern recognition techniques can offer a solution.
- 2. Describe the strength and limitations of some techniques used in pattern recognition for classification, regression and density estimation problems.
- 3. Conduct, document and present a literature review on a topic related to Machine Learning and Pattern Recognition.
- 4. Solve problems in regression and classification.

Course Content :

Introduction to pattern recognition, Statistical and Neural Pattern Recognition, Bayesian decision theory, Linear classifiers, Nonlinear classifiers, Parametric estimation techniques; Non-parametric estimation techniques; Template matching, Dynamic programming methods, Correlation methods, Hidden Markov model, Support vector machine, Syntactic pattern recognition, Clustering algorithms, Principle component analysis.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Identify areas where pattern recognition techniques can offer a solution.		\checkmark										
2. Describe the strength and limitations of some techniques used in patternr cognition for classification, regression and density estimation problems.		\checkmark										
3. Conduct, document and present a literature review on a topic related o Machine Learning and Pattern Recognition.			\checkmark									
4. Sol e problems in regression and classification.			\checkmark									

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2	Introduction to Pattern Recognition Importance of Pattern Recognition tatistical	
	Lec 3	and Neural Pattern Recognition	
2	Lec 4	Review of Probability Distributions	
	Lec 5	Review of Probability Distributions (Contd.) Bayesian classifier	
	Lec 6		Class Test 1
3	Lec 7	Bayes Decision Theory	
	Lec 8	Discriminate Functions	
	Lec 9	Decision Surfaces	
4	Lec 10	Bayesian Classifier for Normal Distribution	
	Lec 11	Naïve Bayes Classifier	
	Lec 12	Bayesian Belief Networks	
5	Lec 13	Linear classifiers	Class Test 2
	Lec 14	Discriminate Functions	Class 1 cst 2
	Lec 15	Decision Hyperplanes	
6	Lec 16	Perceptron Algorithm	
	Lec 17	Least Squares Methods	

	Lec 18	Kessler's Construction	
7	Lec 19	Nonlinear Classifier	
	Lec 20	Two and Three Layer Perceptrons	
	Lec 21	Back Propagation Algorithm	
8	Lec 22	Template matching	
	Lec 23	Optimal Path Searching Techniques	
	Lec 24	Optimal Path Searching Techniques (Contd.)	
9	Lec 25	Dynamic Programming Methods (Contd.)	
	Lec 26	Dynamic Programming Methods (Contd.)	
	Lec 27	Correlation Methods	Class Test 3
10	Lec 31	Context Dependent Classification	
	Lec 32	Observable and Hidden Markov Models	
	Lec 33	Viterbi Algorithm	
11	Lec 28	Problems of HMM	
	Lec 29	Problems of HMM	
	Lec 30	Application of HMM in Speech Recognition	
12	Lec 34	Syntactic Pattern Recognition	,
	Lec 35	Syntactic Pattern Recognition (Contd.)	
	Lec 36	Syntactic Pattern Recognition (Contd.)	
13	Lec 37	Clustering Algorithms	Class Test 4
	Lec 38	Class 1 est 4	
	Lec 39	Clustering Algorithms (Contd.)	
14	Lec 40	Support Vector Machine	
	Lec 41	Support Vector Machine (Contd.)	
	Lec 42	Support Vector Machine (Contd.)	

- 1. Pattern Classification (2nd Edition) R. O. Duda, P.E.D. Hart and G. Stork; John Wiley and Sons (2000)
- 2. Pattern recognition (4th Edition) –Sergios Theodoridis and Konstantinos Koutroumbas; Academic Press (2008)

CSE-444 Pattern Recognition Sessional

Pre-requisite: None

Rationale:

This course motivates to apply various algorithm and techniques - classification, regression, clustering, neural network, decision tree and other estimation techniques which helps to identify different types of pattern in data that can give required solution and suggestions to real-life problems for various applications.

Objective:

- 1. To achieve a basic idea about designing and developing pattern recognition applications using different algorithm and techniques.
- 2. To analyze regular/irregular pattern in data in order to find out potentially useful information.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Use practical knowledge to identify areas where pattern recognition techniques can offer a solution.
- 2. Conduct, document and present a literature review on a topic related to Machine Learning and Pattern Recognition practically.
- 3. Solve problems in regression and classification.

Course Content :

Bayes Classifier, Perceptron Algorithm, Pocket Algorithm, Edit Distance, Basic Sequential Algorithmic Scheme, K-Means Clustering algorithm, Support Vector Machine, Neural Network, Decision Tree.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, project, quiz, viva, lab test. Assessment Methods & their Weights:

Category	Marks %
Project	40
Quiz	20
Viva / Presentation	10
Class Participation	10
Report	10
Class Assessment	10
Total	100

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Use practical knowledge to identify areas where pattern recognition techniques can offer a solution.						\checkmark						
2. Conduct, document and present a literature review on a topic related to Machine Learning and Pattern Recognition practically.								\checkmark				
3. Solve problems in regression and classification.									\checkmark			

Week	Lecture	Topics
1	Lec 1	Introduction to MATLAB
	Lec 2	Python Script
	Lec 3	Project Idea Distribution
2	Lec 4	Introduction to MATLAB (Contd.)
	Lec 5	Python Script
	Lec 6	Pro ect Idea Distribution
3	Lec 7	Project Proposal Presentation
	Lec 8	Project Proposal Presentation (Contd.)
	Lec 9	Project Proposal Presentation (Contd.)
4	Lec 10	Bayes Classifier
	Lec 11	Bayes Classifier (Contd.)
	Lec 12	Home Assignment
5	Lec 13	K-Nearest Neighbour Classification K-Nearest Neighbour
	Lec 14	Classification (Contd.)
	Lec 15	Home Assignment
6	Lec 16	Linear Classifiers
	Lec 17	Linear Classifiers (Contd.)
	Lec 18	Home Assignment
7	Lec 19	Perceptron Algorithm
	Lec 20	Perceptron Algorithm (Contd.)
	Lec 21	Home Assignment
8	Lec 22	Lab Test 1
	Lec 23	Lab Test 1 (Contd.)
	Lec 24	Lab Test 1 (Contd.)

9	Lec 25	Clustering Algorithms
,	Lee 25 Lec 26	
		Clustering Algorithms (Contd.)
	Lec 27	Home Assignment
10	Lec 31	Project Update
	Lec 32	Project Update (Contd.)
	Lec 33	Project Update (Contd.)
11	Lec 28	Support Vector Machine
	Lec 29	Support Vector Machine (Contd.)
	Lec 30	Neural Network
12	Lec 34	Neural Network (Contd.)
	Lec 35	Decision Tree
	Lec 36	Decision Tree (Contd.)
13	Lec 37	Quiz
	Lec 38	Quiz (Contd.)
	Lec 39	Viva
14	Lec 40	Project Final Submission
	Lec 41	Project Final Submission (Contd.)
	Lec 42	Project Final Submission (Contd.)

- 1. A Guide to MATLAB for Beginners and Experienced Users (2nd Edition) Brian R. Hunt Ronald L. Lipsman Jonathan M. Rosenberg with Kevin R. Coombes, John E. Osborn, and Garrett J. Stuck; Cambridge University Press (2006)
- 2. Sergios Theodoridis Introduction to Pattern Recognition: A Matlab Approach (1st Edition)
 Sergios Theodoridis, Aggelos Pikrakis, Konstantinos Koutroumbas and Dionisis Covourous; Academic Press (2010)

CSE-445

3 hours in a week, 3.00 Cr.

Digital Signal Processing Pre-requisite: None

Rationale:

This course discusses the concepts of discrete signal processing and their applications in communications, control and instrumentation.

Objective:

- 1. To understand the key theoretical principles underpinning DSP in a design procedure through design examples and case studies.
- 2. To learn how to use a powerful general-purpose mathematical package such as MATLAB to design and simulate Digital Signal Processing systems.
- 3. To determine the architecture of a digital signal processor and some programming issues in

fixed-point digital signal processor in real-time implementation.

4. To design a real-time signal processing algorithms using the latest fixed-point processor.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Explain the key theoretical principles underpinning DSP in a design procedure through this design examples and case study
- 2. Determine the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation.
- 3. Design signal processing algorithms

Course Content :

Introduction to speech, image & data processing; Discrete time signals, sequences; Linear Constant Coefficient difference equation; Sampling continuous time signals; Two dimensional sequences and systems; Z-transform, Inverse Z-transform, H-transform; Frequency domain representation, discrete time systems and signals; Fourier series and Fourier Transform; Parseval's theorem; Equivalent noise definition of bandwidth; Convolution, Correlation and method of numerical integration; Computation of the DFT: Goertzel FFT, Chirp Z-transform algorithms. Two-dimensional filter design, Quantization effects in digital filters.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

		Program Outcome (PO)										
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Explain the key theoretical principles underpinning DSP in a design procedure through this design examples and case study	\checkmark											
Determine the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation.		\checkmark										
Design signal processing algorithms					\checkmark							

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to speech image & data	
	Lec 2	processing	
	Lec 3		
2	Lec 4	Discrete time signals	
	Lec 5	Sequences	Class Test 1
	Lec 6		
3	Lec 7	Linear Constant Coefficient difference	
	Lec 8	equation	
	Lec 9		
4	Lec 10	Sampling continuous time signals	
	Lec 11		
	Lec 12		
5	Lec 13	Two dimensional sequences and systems	
	Lec 14		
	Lec 15		
6	Lec 16	Z-transform	
	Lec 17	Inverse Z-transform	Class Test 2
	Lec 18	H-transform	Class Test 2
7	Lec 19	Frequency domain representation	
	Lec 20	Discrete time systems and signals	
	Lec 21		
8	Lec 22	Fourier series and Fourier Transform	
	Lec 23		
	Lec 24		
9	Lec 25	Parseval's Theorem	
	Lec 26		
	Lec 27		Class Test 3
10	Lec 31	Equivalent Bandwidth Noise	
	Lec 32	Convolution	
	Lec 33		
11	Lec 28	Correlation	
	Lec 29	Numerical integration	
	Lec 30		
12	Lec 34	Computation of the DFT	
	Lec 35		Class Test 4
	Lec 36		Class 1 est 4
13	Lec 37	Goertzel FFT	

	Lec 38	Chirp Z-transform algorithms.	
	Lec 39		
14	Lec 40	Two-dimensional filter design	
	Lec 41	Quantization effects in digital filters.	
	Lec 42		

- 1. Digital Signal Processing John G. Proakis & Dimitris Manolakis
- 2. Discrete-Time Signal processing Allan Oppenheim & Ronald Schafer
- 3. Digital Signal Processing-A practical approach Emmanuel C. Ifeachor Barrie W. Jervis
- 4. Signals and Systems Rodger Ziemer & William Tranter

CSE-446 Digital Signal Processing Sessional

3 hours in alternate week, 0.75 Cr.

Pre-requisite: None

Rationale:

This course helps to better understanding of dealing with signals and processing signals for getting desired output, removing noise associate with signals.

Objective:

- 1. To design, simulate and implement digital signal processing systems in MATLAB
- 2. To design and implement a real-time signal processing algorithms using the latest fixed-point processor.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Learn how to use a powerful general-purpose mathematical package such as MATLAB to design and simulate Digital Signal Processing systems.
- 2. Determine the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation.
- 3. Design a real-time signal processing algorithms using the latest fixed-point processor.

Course Content:

Speech, image & data processing algorithms; Sampling continuous time signals; Z-transform,

Inverse Z-transform, Frequency domain representation, Fourier series and Fourier Transform; Equivalent noise definition of bandwidth; Convolution, Correlation and method of numerical integration; Computation of the DFT: Goertzel FFT, Chirp Z-transform algorithms. Two-dimensional filter design.

Teaching-learning and Assessment Strategy:

Lectures, class performances, lab test, quiz, viva.

Assessment Methods & their Weights:

Category	Marks %
Lab test	40
Quiz	20
Viva	10
Class Performance	10
Report	10
Class Assessment	10
Total	100

Mapping of Course Outcomes (CO) and Program Outcomes:

		Program Outcome (PO)										
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Learn how to use a powerful general-purpose												
mathematical package such as MATLAB to									,			
design and simulate Digital Signal Processing									\checkmark			
systems.												
Determine the architecture of a digital signal processor and some programming issues in fixed-							v					
point digital signal processor in real-time implementation.							v					
Design a real-time signal processing algorithms using the latest fixed-point processor.									٧			

Week	Lecture	Topics	Remarks
1	Lec 1	Orientation	
	Lec 2	Implementing signal processing algorithm	
	Lec 3		
2	Lec 4	Sampling continuous time signals	Assignment on
	Lec 5		sampling

	Lec 6	
3	Lec 7	Implementing Z-transform, Inverse Z-
	Lec 8	transform
	Lec 9	
4	Lec 10	Problem solving on noise removal using
	Lec 11	bandwidth
	Lec 12	
5	Lec 13	Fourier Transformation of signals
	Lec 14	Assignment: Chirp Z-transform algorithms
	Lec 15	
6	Lec 16	Lab Test
	Lec 17	
	Lec 18	
7	Lec 19	Quiz
	Lec 20	Viva
	Lec 21	

CSE-447 Telecommunication Engineering

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

This course motivates to design and install equipment used for transmitting wired phone, cellular, cable and broadband data as well as working with copper or fiber optic cabling, complex networks and switching systems in order to enable companies to communicate effectively with customers and deliver high standards of customer service.

Objective:

- 1. To perceive knowledge regarding different components and techniques of telecommunication system.
- 2. To specify problems and design various telecommunication system and networks for solving the respective problems.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate theoretical and technical knowledge of telecommunications systems associated with LANs, MANs, and WANs.
- 2. Learn to design, implement, and manage telecommunications systems using voice and data
- 3. Model and simulate telecommunications systems and networks in order to identify and solve these problems.
- 4. Acquire the knowledge and expertise in the field of telecommunication hardware.

Course Content :

Introduction: overview of telecommunication; history, evolution, convergence of telecommunication and data networks; National and International regulatory bodies; Basic elements of Telecommunication: Telephone apparatus, microphone, speaker, ringer, pulse and tone dialing mechanism; local and central batteries and advanced systems of power supplies; Transmission media: Characteristics and applications of twisted pairs, coaxial cables and optical fibers, Terrestrial and satellite microwave, radio waves, VSAT; Telephone operating principles: telephone equipment, description of the modern phone; Telephone switching systems: PSTN, PBX, standards; Basics of communication systems: modulation, multiplexing; Switching system: circuit switching, packet switching; Traffic analysis: Traffic characterization, grades of service, network blocking probabilities, delay system and queuing; Integrated services digital network (ISDN), Digital subscriber loop (DSL), Data communication equipment: Tele-Traffic analysis; Cellular telephony: Frequency reuse, frequency management, channel alignment, handoff strategies, FDMA, TDMA, CDMA and GSM, Introduction to satellite communication, Optical fiber communication, Submarine cables, Digital Radio Microwave, etc.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

		Program Outcome (PO)										
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1.Demonstrate theoretical and technical knowledge of telecommunications systems associated with LANs, MANs, and WANs.	\checkmark											
2. Learn to design, implement, and manage telecommunications systems using voice and data.			\checkmark									
3. Model and simulate telecommunications systems and networks in order to identify and solve these problems.				\checkmark								
4. Acquire the knowledge and expertise in the field of telecommunication hardware.	\checkmark											

Mapping of Course Outcomes (CO) and Program Outcomes:

Week	Lecture	Topics	Class Test			
1	Lec 1	Introduction: Overview of				
		Telecommunication				
	Lec 2	History of Telecommunication				
	Lec 3	Evolution of Telecommunication				
2	Lec 4	Convergence of Telecommunication Class Test				

	Lec 5	Data Networks	
	Lec 6	Introduction: Regulatory Bodies	
3	Lec 7	National Regulatory Bodies	-
-	Lec 8	International Regulatory Bodies	
	Lec 9	International Regulatory Bodies (Contd.)	
4	Lec 10	Basic Elements of Telecommunication,	
		Telephone Apparatus	
	Lec 11	Microphone, Speaker and Ringer	
	Lec 12	Pulse and Tone Dialing Mechanism, Local	
		and Central Batteries	
5	Lec 13	Advanced Systems of Power Supplies	
	Lec 14	Transmission Media	
	Lec 15	Characteristics and Applications: Twisted	
		Pairs	Class Test 2
6	Lec 16	Characteristics and Applications: Coaxial	
		Cable	
	Lec 17	Characteristics and Applications: Optical	
		Fibers	
	Lec 18	Terrestrial Microwave	
7	Lec 19	Satellite Microwave	
	Lec 20	VSAT	
	Lec 21	Radio Waves	
8	Lec 22	Telephone Operating Principles	
	Lec 23	Telephone Equipment	
	Lec 24	Description of a Modern Phone	
9	Lec 25	PSTN, PBX Standards	
	Lec 26	Modulation	
	Lec 27	Multiplexing	Class Test 3
10	Lec 31	Switching System	
	Lec 32	Circuit Switching	
	Lec 33	Packet Switching	
11	Lec 28	Traffic Characterization	
	Lec 29	Traffic Analysis	
	Lec 30	Grades of Service	
12	Lec 34	ISDN	
	Lec 35	DSL	
	Lec 36	Cellular Telephony	
13	Lec 37	FDMA, CDMA	
	Lec 38	TDMA, GSM	Class Test 4
	Lec 39	Introduction to Satellite Communication	
14	Lec 40	Optical Fibre Communication	
	Lec 41	Submarine Cables	
	Lec 42	Digital radio Microwave	

1. Introduction to Telecommunication: Voice, Data and the Internet (1st Edition) – Marion

Cole; Prentice Hall (2010)

- 2. Essential Guide to Telecommunications (5th Edition) Annabel Z. Dodd; Prentice Hall (2012)
- 3. Optical Fiber Communication: Principles and Practice (3rd Edition) John M Senior; Pearson (2010)
- Modern Digital and Analog Communication System (4th Edition) B P Lathi; Oxford (2011)

CSE-448 Telecommunication Engineering Sessional

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

This course aims provide hands on practice to design and install equipment used for transmitting wired phone, cellular, cable and broadband data as well as working with copper or fiber optic cabling, complex networks and switching systems in order to enable companies to communicate effectively with customers and deliver high standards of customer service.

Objective:

- 1. To perceive knowledge regarding different components and techniques of telecommunication system.
- 2. To specify problems and design various telecommunication system and networks for solving the respective problems.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate theoretical and technical knowledge of telecommunications systems associated with LANs, MANs, and WANs.
- 2. Learn to design, implement, and manage telecommunications systems using voice and data
- 3. Model and simulate telecommunications systems and networks in order to identify and solve these problems.
- 4. Acquire the knowledge and expertise in the field of telecommunication hardware.

Course Content :

Introduction: overview of telecommunication; history, evolution, convergence of telecommunication and data networks; National and International regulatory bodies; Basic elements of Telecommunication: Telephone apparatus, microphone, speaker, ringer, pulse and tone dialing mechanism; local and central batteries and advanced systems of power supplies; Transmission media: Characteristics and applications of twisted pairs, coaxial cables and optical fibers, Terrestrial and satellite microwave, radio waves, VSAT; Telephone operating principles: telephone equipment, description of the modern phone; Telephone switching systems: PSTN, PBX, standards; Basics of communication systems: modulation, multiplexing; Switching system: circuit switching, packet switching; Traffic analysis: Traffic characterization, grades of service, network blocking probabilities, delay system and queuing; Integrated services digital network (ISDN), Digital subscriber loop (DSL), Data communication equipment: Tele-Traffic analysis; Cellular telephony: Frequency reuse, frequency management, channel alignment, handoff strategies, FDMA, TDMA, CDMA and GSM, Introduction to satellite communication, Optical fiber communication, Submarine cables, Digital Radio Microwave, etc.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Assessment Methods & their Weights:

				Pro	gra	m O	utco	me ((PO)		
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1.Demonstrate theoretical and technical												
knowledge of telecommunications systems associated with LANs, MANs, and WANs.							\checkmark					
2. Learn to design, implement, and manage												
telecommunications systems using voice and												
data.											\checkmark	
3. Model and simulate telecommunications												
systems and networks in order to identify and												
solve these problems.												\checkmark
4. Acquire the knowledge and expertise in the												
field of telecommunication hardware.												\checkmark

Week	Lecture	Topics
1	Lec 1	Introduction: Overview of Telecommunication
		History of Telecommunication
	Lec 2	Evolution of Telecommunication
	Lec 3	
2	Lec 4	Convergence of Telecommunication
	Lec 5	Data Networks
	Lec 6	Introduction: Regulatory Bodies
3	Lec 7	National Regulatory Bodies
	Lec 8	International Regulatory Bodies
	Lec 9	International Regulatory Bodies (Contd.)
4	Lec 10	Basic Elements of Telecommunication, Telephone Apparatus
		Microphone, Speaker and Ringer
	Lec 11	Pulse and Tone Dialing Mechanism, Local and Central Batteries
	Lec 12	
5	Lec 13	Advanced Systems of Power Supplies
	Lec 14	Transmission Media
	Lec 15	Characteristics and Applications: Twisted Pairs
6	Lec 16	Characteristics and Applications: Coaxial Cable
		Characteristics and Applications: Optical Fibers
	Lec 17	Terrestrial Microwave
	Lec 18	
7	Lec 19	Satellite Microwave
	Lec 20	VSAT
	Lec 21	Radio Waves
8	Lec 22	Telephone Operating Principles
	Lec 23	Telephone Equipment
	Lec 24	Description of a Modern Phone
9	Lec 25	PSTN, PBX Standards
	Lec 26	Modulation
10	Lec 27	Multiplexing
10	Lec 31	Switching System
	Lec 32	Circuit Switching
11	Lec 33	Packet Switching
11	Lec 28	Traffic Characterization
	Lec 29	Traffic Analysis
10	Lec 30	Grades of Service
12	Lec 34	ISDN
	Lec 35	DSL Cellular Telerhony
10	Lec 36	Cellular Telephony
13	Lec 37	FDMA, CDMA
	Lec 38	TDMA, GSM
	Lec 39	Introduction to Satellite Communication

14	Lec 40	Optical Fibre Communication
	Lec 41	Submarine Cables
	Lec 42	Digital radio Microwave

- 1. Introduction to Telecommunication: Voice, Data and the Internet (1st Edition) Marion Cole; Prentice Hall (2010)
- 2. Essential Guide to Telecommunications (5th Edition) Annabel Z. Dodd; Prentice Hall (2012)
- 3. Optical Fiber Communication: Principles and Practice (3rd Edition) John M Senior; Pearson (2010)
- 4. Modern Digital and Analog Communication System (4th Edition) B P Lathi; Oxford (2011)

CSE-449

3 hours in a week, 3.00 Cr.

Mobile and Ubiquitous Computing

Pre-requisite: None

Rationale:

This course motivates to enable computing technologies in such a way where computing is allowed to appear anytime and everywhere by studying affordances, limitations, necessary protocols, user interfaces, framework design etc. of such computing systems in order to implement them for different applications.

Objective:

- 1. To identify different features that helps to develop a mobile, personalized and context independent computing system.
- 2. To analyze the different properties and requirements that influences the development of a mobile and ubiquitous computing system.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe mobile wireless communication technologies and explain their functioning.
- 2. Explain the fundamental trade-offs related to resource limitations and communication

needs in mobile communication and sensing systems.

3. Demonstrate an understanding of the range of novel applications based upon mobile systems as well as their particular requirements

Course Content :

Introduction - Evolution of mobile computing systems, Affordances of mobile systems (ubiquitous connectivity, personalization, context awareness), Constraints of the mobile platform (wireless quality, battery limitations, UI limitations, sensing accuracy).Network and Transport Protocol for Wireless Networks, Mobile IP and Variants of TCP; Distributed Systems platforms for Mobile Computing, Proxy Based Architectures, Service Discovery, Interaction Platforms; File System support for Mobile Computing; Development in Context-aware and Ubiquitous computing; Smart Embedded devices, Information Appliance and Wearable computers; Sensing and Context Acquisition in Ubiquitous Computing; Proximity-based Networking, Communication protocol for Wireless Sensor Networks; Human Interaction in Ubiquitous Computing Environments, Tangible User Interfaces, Privacy and Security. Technological Component of Location Based Service (LBS)-WAP, GPS, Cell Based Location, 3G wireless, VXML, SMS-MMS, Personal Area Networks (802.11, Bluetooth, IRFIDs), Micro-Electro- Mechanical (MEMES), Recommender systems (Collaborative Filtering, Intelligent Agents).Android Framework, and Application structure.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Describe mobile wireless communication technologies and explain their functioning.	\checkmark											
Explain the fundamental trade-offs related to resource limitations and communication needs in mobile communication and sensing systems.		\checkmark										
Demonstrate an understanding of the range of novel applications based upon mobile systems as well as their particular requirements.	\checkmark											

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction	
	Lec 2	Evolution of Mobile Computing Systems	
	Lec 3	Affordances of Mobile Systems	
2	Lec 4	Constraints of the Mobile Platform	
	Lec 5	Network Protocol for Wireless Networks	
	Lec 6	Transport Protocol for Wireless Networks	
3	Lec 7	Mobile IP	Class Test 1
	Lec 8	Variants of TCP	
	Lec 9	Distributed Platforms for Mobile	
		Computing	
4	Lec 10	Proxy Based Architectures	
	Lec 11	Service Discovery	
	Lec 12	Interaction Platforms	
5	Lec 13	File System Support for Mobile Computing	
	Lec 14	Development of Context Aware	
	Lec 15	Computing	
		Development of Ubiquitous Computing	Class Test 2
6	Lec 16	Smart Embedded Device	
	Lec 17	Information Appliance	
	Lec 18	Wearable Computers	
7	Lec 19	Sensing Acquisition	
	Lec 20	Context Acquisition	
	Lec 21	Proximity Based Networking	
8	Lec 22	Proximity Based Networking (Contd.)	
	Lec 23	Communication Protocol for Wireless	
	Lec 24	Sensor Network	
		Human Interaction in Ubiquitous	
		Computing Environment	
9	Lec 25	Tangible User Interfaces	
	Lec 26	Privacy and Security	Class Test 3
	Lec 27	Privacy and Security (Contd.)	
10	Lec 31	Components of LBS-WAP	
-	Lec 32	Components of GPS	
	Lec 33	Cell-based Location Service	
11	Lec 28	3G Wireless	
-	Lec 29	VXML	
	Lec 30	SMS-MMS	
12	Lec 34	Personal Area Network	Class Test 4

	Lec 35	802.11 and Bluetooth
	Lec 36	IRFIDs
13	Lec 37	Micro-electro-mechanical (MEMES)
	Lec 38	Android Framework
	Lec 39	Android Application Structure
14	Lec 40	Recommender System
	Lec 41	Collaborative Filtering
	Lec 42	Intelligent Agents

- 1. Context-Aware Mobile and Ubiquitous Computing for Enhanced Usability: Adaptive Technologies and Applications (1st Edition) –Dragan Stojanovic; Information Science Reference (2009)
- 2. Fundamentals of Mobile and Pervasive Computing (1st Edition) Frank Adelstein,

Sandeep KS Gupta, Golden Richard III and Loren Schwiebert; McGraw-Hill (2004)

3. Handbook on Mobile and Ubiquitous Computing: Status and Perspective (1st Edition) - Laurence T. Yang, EviS Yukur and Seng W. Loke; CRC Press (2013)

CSE-450

3 hours in alternate week, 0.75 Cr.

Mobile and Ubiquitous Computing Sessional

Pre-requisite: None

Rationale:

This course motivates to use mobile communication and sensing systems based on devices which are equipped with sensors that enable the inference of the surrounding context, including the position, activity, and the environment of the user and emphasize on developing deeper understanding of the functioning of mobile wireless networks, mobile sensing, pervasive computing and applications of mobile systems.

Objective:

- 1. To demonstrate understanding of the technical, commercial and social issues relating to ubiquitous communications and the basics of wireless communications.
- 2. To develop simple wireless web applications.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate practical skills in developing mobile sensing applications.
- 2. Design and create mobile application in team base with presentation.
- 3. Explain the range of novel applications based upon mobile systems as well as their particular requirements.

Course Content :

Evolution of mobile computing systems, Affordances of mobile systems, Network and TransportProtocol for Wireless Networks, Mobile IP and Variants of TCP, Proximity based Networking,CommunicationprotocolforWirelessSensorNetworks.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, viva, quiz, project.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

		Program Outcome (PO)										
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Demonstrate practical skills in developing mobile sensing applications.						\checkmark						
2. Design and create mobile application in team base with presentation.									\checkmark			
3. Explain the range of novel applications based upon mobile systems as well as their particular requirements.							\checkmark					

Week	Lecture	Topics
1	Lec 1	Introduction to Mobile and Ubiquitous Computing
	Lec 2	Affordances of Mobile Systems
	Lec 3	Constraints of Mobile Platform
2	Lec 4	Wireless Fundamentals
	Lec 5	Introduction to Mobile OS - iOS, Android
	Lec 6	Android Programming
3	Lec 7	Discussion of Project Proposal
	Lec 8	Discussion of Project Proposal (Contd.)
	Lec 9	Discussion of Project Proposal (Contd.)
4	Lec 10	Android Programming -
	Lec 11	Android Framework
	Lec 12	Android Application Structure
5	Lec 13	UI components and Layouts
	Lec 14	Notification Manager and Listeners
	Lec 15	Home Assignment
6	Lec 16	Presentation on the project proposal
	Lec 17	Presentation on the project proposal
	Lec 18	Submission of a report
7	Lec 19	Local- Area Wireless Interfaces on Smartphones
	Lec 20	Details of IEEE 802.11 and Bluetooth
	Lec 21	Lab Assignment
8	Lec 22	Mobile Sensing Strategies
	Lec 23	Mobile Sensing Strategies (Contd.)
	Lec 24	Home Assignment
9	Lec 25	Show Project Update
	Lec 26	Show Project Update (Contd.)
	Lec 27	Show Project Update (Contd.)

10	Lec 31	Sensor Sampling
	Lec 32	Best Practices in Sensing
	Lec 33	Sensing position, Activity, Environment.
11	Lec 28	Communication Management in Android Java Sockets
	Lec 29	Data transfer with Android
	Lec 30	
12	Lec 34	Show Project Update
	Lec 35	Show Project Update (Contd.)
	Lec 36	Show Project Update (Contd.)
13	Lec 37	Wireless Traffic Analysis from Large Scale Data sets
	Lec 38	Call Data Record
	Lec 39	Home Assignment: Case Study
14	Lec 40	Viva
	Lec 41	Submission of Final Project
	Lec 42	Project Presentation

- 1. Handbook on Mobile and Ubiquitous Computing: Status and Perspective (1st Edition) -Laurence T. Yang, EviS Yukur and Seng W. Loke; CRC Press (2013)
- 2. Android Studio 3.0 Development Essentials (1st Edition) Android 8 Edition; CreateSpace Independent Publishing Platform (2017)

CSE-451

3 hours in a week, 3.00 Cr.

Simulation and Modeling

Pre-requisite: None

Rationale:

This course motivates to enable a substitute of physical experimentation that is often utilized when conducting experiments on a real system which is impossible or impractical, often because of cost

or time and instead uses mathematical knowledge and computer's computation power to solve real-world problems reasonably and in a time efficient manner.

Objective:

- 1. To recognize different parameters and variables that affects a system's simulation.
- 2. To design a model for a particular dataset and analyze a system's behaviour for real life problems.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Define basic concepts in modeling and simulation (M&S).
- 2. Classify various simulation models and give practical examples for each category.
- 3. Construct a model for a given set of data and motivate its validity.

Course Content :

Simulation modeling basics: systems, models and simulation; Classification of simulation model; Steps in a simulation study; Concepts in discrete-event simulation: event scheduling vs. process interaction approaches, Time-advance mechanism, organization of a discrete-event simulation model; continuous simulation models; Combined discrete-continuous models; Monte Carlo simulation; Simulation of queuing systems. Building valid and credible simulation models: validation principles and techniques, statistical procedures (or comparing real-world observations and simulation outputs, input modeling; Generating random numbers and random variants; Output analysis. Simulation languages; Analysis and modeling of some practical systems, Random Number Generator, Random Variables, Probability Distribution.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Define basic concepts in modeling and simulation (M&S).	\checkmark											
2. Classify various simulation models and give practical examples for each category.		\checkmark										
3. Construct a model for a given set of data and motivate its validity.			\checkmark									

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Simulation	
	Lec 2	Applications of Simulation	
	Lec 3	System and System Environment	
2	Lec 4	Attributes of a System	
	Lec 5	Types of Models	
	Lec 6	Components and Organization of a Discrete	
		Event Simulation Model	Class Test 1
3	Lec 7	Single Server Queuing System	Class Test I
	Lec 8	Performance Measure	
	Lec 9	Event Routines	
4	Lec 10	Review Of Basic Probability And Statistics	
	Lec 11	PDF And CDF	
	Lec 12	Properties Of Random Variables	
5	Lec 13	Covariance and Correlation	
	Lec 14	Jointly Continuous Random Variables	
	Lec 15	Simulation of Inventory System	Class Test 2
6	Lec 16	Continuous Simulation	Class Test 2
	Lec 17	Predator-Prey Model	
	Lec 18	Useful Probability Distributions	
7	Lec 19	Parameterization of Continuous Distributions	
	Lec 20	Continuous Probability Distribution	
	Lec 21	Continuous Probability Distribution (Contd.)	
8	Lec 22	Discrete Probability Distribution	
	Lec 23	Discrete Probability Distribution (Contd.)	
	Lec 24	Monte Carlo Simulation	
9	Lec 25	Monte Carlo Simulation (Contd.)	
	Lec 26	Generating Random Variables	
	Lec 27	Random Variable Method: Inverse Transform	Class Test 3
10	Lec 31	Random Variable Method: Composition	UIASS I EST J
	Lec 32	Random Variable Method: Convolution	
	Lec 1Introduction to SimulationLec 2Applications of SimulationLec 3System and System EnvironmentLec 4Attributes of a SystemLec 5Types of ModelsLec 6Components and Organization of a DiscreteEvent Simulation ModelLec 7Single Server Queuing SystemLec 8Performance MeasureLec 9Event RoutinesLec 10Review Of Basic Probability And StatisticsLec 11PDF And CDFLec 12Properties Of Random VariablesLec 13Covariance and CorrelationLec 14Jointly Continuous Random VariablesLec 15Simulation of Inventory SystemLec 16Continuous SimulationLec 17Predator-Prey ModelLec 18Useful Probability DistributionsLec 20Continuous Probability DistributionLec 21Continuous Probability DistributionLec 23Discrete Probability DistributionLec 24Monte Carlo SimulationLec 25Monte Carlo SimulationLec 26Generating Random VariablesLec 27Random Variable Method: Inverse TransformLec 31Random Variable Method: Composition		
		Rejection	
11	Lec 28	Random Variable Method: Acceptance -	
		Rejection (Contd.)	
	Lec 29	Mathematical Problems For Inverse Method	
	Lec 30	Generating Random Variates	
12	Lec 34	Acceptance-Rejection Method For Generating	
		Random Variates	Class Test 4
	Lec 35	Sample Variance And Mean	
	Lec 36	Central Limit Theorem	

13	Lec 37	Mathematical Problems of Central Limit	
		Theorem	
	Lec 38	Confidence Interval	
	Lec 39	Test of Hypothesis And its Error	
14	Lec 40	Markov's Inequality and Chebyshev's	
		Inequality	
	Lec 41	Combined Discrete-Continuous Simulation	
	Lec 42	Validation and Verification Of Simulation	
		Model	

- Simulation Modeling and Analysis (5th Edition) Law A. M., Kelton W. D.; McGraw Hill (2014)
- 2. Computer Aided Modeling and simulation J. A. Spriet
- 3. Computer Simulation and Modeling R. S. Lehman
- 4. System Simulation G. Cordon

3 hours in alternate week, 0.75 Cr.

CSE-452 Simulation and Modeling Sessional

Pre-requisite: None

Rationale:

This course motivates to design various models to solve real-world problems using mathematics, computer programming language, computation power etc. and analyze the behaviour of a system for different types of dataset to provide a reasonable decision regarding the performance of a system in a cost and time effective manner.

Objective:

- 1. To design a model for a physical experimentation using different programming languages on different platforms.
- 2. To analyze the characteristics of the simulation result basing on different sets of data and test its validity.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Generate and test random number variants and apply them to develop simulation models.
- 2. Select and analyze output data produced by a model and test the validity of the model.
- 3. Construct a model for a given set of data and motivate its validity.

Course Content :

Simulation modeling basics: systems, models and simulation, Classification of simulation model, Steps in a simulation study, Single Server Queuing System, Inventory Management System, Monte Carlo Method, Pure Pursuit Problem, Probability Distribution Fitting, Random Number Generation, Hypothesis Testing.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, lab test, quiz, viva.

Assessment Methods & their Weights:

Assessment Method	(100%)
Lab Test	40
Quiz	20
Viva	10
Class Participation	10
Report	10
Class Assessment	10

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Generate and test random number variants and apply them to develop simulation models.										J	2	2
2. Select and analyze output data produced by a model and test the validity of the model.					√			√			√	√
3. Construct a model for a given set of data and motivate its validity.							\checkmark		\checkmark		\checkmark	

Week	Lecture	Topics	Remarks
1	Lec 1	Simulation Modeling Basics	
	Lec 2	Systems, Models and Simulation Types	
	Lec 3	Sequence of Simulation Study	
2	Lec 4	Single Server Queuing System	
	Lec 5	Lab Assignment	
	Lec 6	Home Assignment	
3	Lec 7	Single Server Queuing System (Contd.)	
	Lec 8	Lab Assignment	
	Lec 9	Home Assignment	
4	Lec 10	Inventory Management System	
	Lec 11	Lab Assignment	
	Lec 12	Home Assignment	
5	Lec 13	Inventory Management System (Contd.)	
	Lec 14	Lab Assignment	
	Lec 15	Home Assignment	
6	Lec 16	Monte Carlo Method	
	Lec 17	Lab Assignment	
	Lec 18	Home Assignment	
7	Lec 19	Monte Carlo Method (Contd.)	
	Lec 20	Lab Assignment	
	Lec 21	Home Assignment	
8	Lec 22	Pure Pursuit Problem	
	Lec 23	Lab Assignment	
	Lec 24	Home Assignment	
9	Lec 25	Pure Pursuit Problem (Contd.)	
	Lec 26	Lab Assignment	
	Lec 27	Home Assignment	
10	Lec 31	Probability Distribution Fitting	
	Lec 32	Lab Assignment	
	Lec 33	Home Assignment	
11	Lec 28	Probability Distribution Fitting (Contd.)	
	Lec 29	Lab Assignment	
	Lec 30	Home Assignment	
12	Lec 34	Random Number Generation	
	Lec 35	Lab Assignment	
	Lec 36	Home Assignment	
13	Lec 37	Hypothesis Testing	
	Lec 38	Lab Assignment	
	Lec 39	Home Assignment	
14	Lec 40	Lab Test	
	Lec 41	Quiz	
	Lec 42	Viva	

1. Discrete-Event System Simulation (5th Edition) - Jerry Banks; Prentice Hall (2009)

CSE-453

Data Ware-housing and Data Mining

3 hours in a week, 3.00Cr.

Pre-requisite: NONE

Rationale:

For better data analysis, visualization and decision making concepts of data ware housing and data mining plays vital role.

Objective:

- 1. To evaluate accuracy of models/ algorithms, discover and measure interesting patterns from different kinds of databases of clustering, classification, association finding, feature selection and visualization to real world data.
- 2. To identify problems profitably be addressed via data mining methods.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Decide and evaluate models/ algorithms with respect to their accuracy.
- 2. Discover and measure interesting patterns from different kinds of databases. Apply the techniques of clustering, classification, association finding, feature selection and visualization to real world data.
- 3. Learn to identify problems that can profitably be addressed via data mining methods.

Course Content:

Introduction; Data warehousing and OLAP technology for data mining; Data preprocessing; Data mining

primitives, languages and systems; Data visualization techniques; Data Cube computation and multidimensional data analysis; Descriptive data mining: characterization and comparison; Association analysis; Classification and prediction; Cluster analysis; Mining complex types of data; Applications and trends in data mining.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Decide and evaluate models/ algorithms with respect to their accuracy		\checkmark										
Discover and measure interesting patterns from different kinds of databases. Apply the techniques of clustering, classification, association finding, feature selection and visualization to real world data.			\checkmark									
Learn to identify problems that can profitably be addressed via data mining methods.		\checkmark										

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction	
	Lec 2		
	Lec 3		
2	Lec 4	Data warehousing and OLAP technology for	
	Lec 5	data mining	
	Lec 6		
3	Lec 7	Data preprocessing	Class Test 1
	Lec 8		
	Lec 9		
4	Lec 10	Data mining	
	Lec 11	primitives, languages and systems	
	Lec 12		
5	Lec 13	Data Visualization Techniques	
	Lec 14		
	Lec 15		Class Test 2
6	Lec 16	Data Cube computation	
	Lec 17		
	Lec 18		
7	Lec 19	Multidimensional data analysis	
	Lec 20		
	Lec 21		
8	Lec 22	Descriptive Data mining	
	Lec 23		

	Lec 24		
9	Lec 25	Characterization and comparison	
	Lec 26		Class Test 3
	Lec 27		
10	Lec 31	Association analysis	
	Lec 32		
	Lec 33		
11	Lec 28	Classification and prediction	
	Lec 29		
	Lec 30		
12	Lec 34	Cluster analysis	
	Lec 35		
	Lec 36		
13	Lec 37	Mining complex types of data	
	Lec 38		Class Test 4
	Lec 39		
14	Lec 40	Applications and trends in data mining	
	Lec 41		
	Lec 42		

- 1. Data Mining: Concepts and Techniques Jiawei Han, MichelineKamber, and Jian Pei, (Morgan Kaufmann)
- 2. Data Mining and Data Warehousing Bharat BhushanAgarwal, SumitPrakashTayal
- 3. Data Warehousing, Data Mining, and OLAP Alex Berson and Stephen J. Smith

CSE-454

3 hours in alternate week, 0.75 Cr.

Data Ware-housing and Data Mining Sessional

Pre-requisite: None

Rationale:

Implementing data analysis methods, visualization and decision making concepts of data ware housing and data mining.

Objective:

- 1. Gain a working knowledge of the strengths and limitations of modern data mining methods (algorithms).
- 2. Learn to identify problems that can profitably be addressed via data mining methods.
- 3. Learn how to set up data for data mining experiments.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Gain a working knowledge of the strengths and limitations of modern data mining methods (algorithms).
- 2. Learn to identify problems that can profitably be addressed via data mining methods.
- 3. Learn how to set up data for data mining experiments.

Course Content:

Data warehousing and OLAP technology, Data preprocessing, Data visualization techniques, Data Cube computation and multidimensional data analysis, Association analysis; Classification and prediction; Cluster analysis; Mining complex types of data.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, lab tests, quiz, viva.

Assessment Methods & their Weights:

Assessment Method	(100%)
Lab Test	40
Quiz	20
Viva	10
Class Participation	10
Report	10
Class Assessment	10

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Gain a working knowledge of the strengths and limitations of modern data mining methods (algorithms).	٧											
Learn to identify problems that can profitably be addressed via data mining methods.		٧										
Learn how to set up data for data mining experiments.			٧									

Lecture Schedule

Week	Lecture	Topics	Remarks
1	Lec 1	Orientation lab	
	Lec 2	Practical on Data warehousing	
	Lec 3		
2	Lec 4	Implementing Data preprocessing techniques	
	Lec 5		Assignment
	Lec 6		
3	Lec 7	Implementing Data visualization techniques	
	Lec 8	Implementing association analysis	Assignment
	Lec 9		
4	Lec 10	Practice on Classification and prediction;	
	Lec 11		Lab Test 1
	Lec 12		
5	Lec 13	Practice on Cluster analysis	
	Lec 14		Assignment
	Lec 15		
6	Lec 16	Final Lab Test	
	Lec 17		
	Lec 18		
7	Lec 19	Final Quiz	
	Lec 20	Viva	
	Lec 21		

Text and Ref Books:

- 1. Data Mining: Concepts and Techniques Jiawei Han, MichelineKamber, and Jian Pei, (Morgan Kaufmann)
- 2. Data Mining and Data Warehousing Bharat BhushanAgarwal, Sumit Prak

APPLICABLE FOR CSE-16

CSE-16 has already completed up to Level-3, Term-II on the approved syllabus applicable for CSE - 15, 16 & 17 as on December 2018. From Level-4, Term-I onwards they will follow the rest of the syllabus according to the following outline.

LEVEL-4 TERM-I

3 hours in a week, 1.50 Cr.

CSE-400

Thesis

Pre-requisite: None

Rationale:

This course motivates to go neck-deep in research, synthesize it, and make a point or look at something in a different way after going through all of it.

Objective:

- 1. To study, analyze and provide solutions for the problems of Computer Science and Engineering.
- 2. To learn about the research methodology as well as technical document writing.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Select, analyze, and classify a particular field to do research.
- 2. Solve real life complex problems
- 3. Explain and describe the time-cost estimation and ethical values.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Select, analyze, and classify a particular field to do research.		\checkmark										
2. Solve real life complex problems.			\checkmark									
3. Explain and describe the time-cost estimation and ethical values.								\checkmark				

CSE-401

System Analysis, Design and Development

Pre-requisite: None

Rationale:

This course motivates to perceive information systems planning, analysis, design and implementation; graphical methods for representing information structure, practical design methodologies, database design and prototyping; communication skills, project management to solve various real life problems.

Objective:

- 1. To assist students develop a comprehensive understanding of how information systems are developed through the activities of systems planning, analysis, design and implementation.
- 2. To analyze different information systems for different real life organizational context.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss the practical approaches of designing & developing Information Systems for industries/ business organizations.
- 2. Discover and develop awareness of Information Technological ecosystems.
- 3. Solve real life complex problems.

Course Content:

Different types of information; Qualities of information; Analysis o Information requirements for modern organizations; Role, tasks and attributes of a Systems Analyst; Sources of information; Information gathering techniques; Editing; Handling of missing information; Requirements specifications; Steps of systems analysis; Concepts of feasibility analysis: Analysis of technical facilities; Cost-benefit analysis; Design of an information system; Design Patterns; Hardware and software analysis; Introduction to IT project management: Estimation of confidence level: Simplex method for minimization of project time; project team organization, ; IT Adoption and Diffusion theories; Ethics and privacy: Control and security.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Discuss the practical approaches of designing & developing Information Systems for industries/ business organizations.			\checkmark									
2. Discover and develop awareness of Information Technological ecosystems.				\checkmark								
3. Solve real life complex problems.			\checkmark									

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Systems Concepts	
	Lec 2	Types and Qualities of Information	
	Lec 3	Information Systems Environment	
2	Lec 4	The Systems Development Life Cycle	
	Lec 5	Analysis of Information	
	Lec 6	Information Requirements for Modern	
		Organizations	Class Test 1
3	Lec 7	The Role of the Systems Analyst	Class Test I
	Lec 8	The Tasks of the Systems Analyst	
	Lec 9	The Attributes of the Systems Analyst	
4	Lec 10	Systems Planning and the Initial	
	Lec 11	Investigation	
	Lec 12	Sources of information	
		Information Gathering Techniques	
5	Lec 13	Requirements Analysis	
	Lec 14	Requirement Specification	
	Lec 15	Steps of Requirement Analysis	Class Test 2
6	Lec 16	Business Process Model	
	Lec 17	Data Flow Diagrams	
	Lec 18	Project Effort Analysis Methods	
7	Lec 19	The Tools of Structured Analysis	
	Lec 20	Feasibility Analysis	
	Lec 21	Analysis of Technical Facilities	
8	Lec 22	User Interface Design	
	Lec 23	Interaction Design	
	Lec 24	Information Architecture	
9	Lec 25	Design of an Information System	
	Lec 26	Introduction to Project Management	Class Test 3
	Lec 27	Introduction to Project Management (Contd.)	Class Lest 3
10	Lec 31	Project Time Management	
	Lec 32	Estimation of Confidence Level	

	Lec 33	Network Model for Project Time Estimation	
11	Lec 28	Productivity Tools	
	Lec 29	Feasibility Analysis	
	Lec 30	Analysis of Technical Facilities	
12	Lec 34	Cost/Benefit Analysis	
	Lec 35	IT Adoption	
	Lec 36	Diffusion Theory	
13	Lec 37	Project Risk Management	
	Lec 38	Project Team Organization	Class Test 4
	Lec 39	Estimation of confidence level	
14	Lec 40	Information System Security	
	Lec 41	Ethics and Privacy	
	Lec 42	Control and Security	

- 1. System Analysis and Design (2nd Edition) Elias M. Awad; Galgotia Publications Pvt. Ltd. (2010)
- 2. System Analysis and Design (2nd Edition) Raja Raman; Prentice Hall (2004)
- 3. System Analysis and Design Methods (7th Edition) Jeffery L. Whitten; McGraw Hill (2007)
- 4. System Analysis and Design (9th Edition) Kendel & Kendel; Pearson (2013)

CSE-403

3 hours in a week, 3.00 Cr.

Artificial Intelligence

Pre-requisite: None

Rationale:

Artificial intelligence is the beginning of revolution for rational behavior of intelligent agents along with representation, planning, learning and perception of knowledge.

Objective:

- 1. To discuss and distinguish the notions of rational behavior and intelligent agents.
- 2. To develop a general appreciation of the goals, subareas, achievements and difficulties of AI.
- 3. To have knowledge of methods of blind as well as informed search in case of knowledge representation, planning, learning, robotics and other AI areas and ability to practically apply the corresponding techniques.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

1. Discuss and distinguish the notions of rational behavior and intelligent agents.

- 2. Develop a general appreciation of the goals, subareas, achievements and difficulties of AI.
- 3. Analysis methods of blind as well as informed search and ability to practically apply the corresponding techniques.

Investigate of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.

Course Content:

Overview of AI, Knowledge representation, LISP/Prolog and other Al programming languages; Review of Uninformed Search Strategies and game playing; Informed search Strategies: A*, Heuristic functions, Memory Bounded Search (IDA*, SMA*); Iterative improvement Search, constraint satisfaction problems. Review of Propositional logic, first order Logic, Introduction to Planning, Partial Order Planning. Bayesian Rule and its use in probabilistic reasoning; Belief Networks and Decision Networks; Learning Decision Trees; Learning General Logical descriptions-Hypothesis. Introduction to Natural Language Processing.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

			Program Outcome (PO)										
Course Outcomes(CO) of the Course		2	3	4	5	6	7	8	9	1 0	1 1	1 2	
1. Discuss and distinguish the notions of rational behavior and intelligent agents.	v												
2. Develop a general appreciation of the goals, subareas, achievements and difficulties of AI.			v										
3. Have knowledge of methods of blind as well as informed search and ability to practically apply the corresponding techniques.		v											
4. Have general understanding of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.				V									
5. Develop programming skills for AI applications.	٧												

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to AI	
	Lec 2	Uninformed Search I	
	Lec 3		
2	Lec 4	Uninformed Search II	
	Lec 5		
	Lec 6	Informed Search I	
3	Lec 7	Informed Search II	Class Test 1
	Lec 8		
	Lec 9		
4	Lec 10	Beyond Classical Search	
	Lec 11		
	Lec 12		
5	Lec 13	Adversarial Search I	
	Lec 14		
	Lec 15		— Class Test 2
6	Lec 16	Adversarial Search II	
	Lec 17	Constraint Satisfaction Problems I	
	Lec 18		
7	Lec 19	Constraint Satisfaction Problems II	
	Lec 20		
	Lec 21		
8	Lec 22	Uncertainty and Probabilities	
	Lec 23		
	Lec 24		
9	Lec 25	Markov Models (MM), Hidden MM	
	Lec 26	(HMM)	
	Lec 27		Class Test 3
10	Lec 31	Bayes Net	
	Lec 32		
	Lec 33		
11	Lec 28	ML: Naive Bayes	
	Lec 29		
	Lec 30		
12	Lec 34	ML: Perceptions	
	Lec 35	ML: Kernels and Clustering	
	Lec 36		
13	Lec 37	Advanced Applications: NLP, Games and	
	Lec 38	Cars	Class Test 4
	Lec 39		
14	Lec 40	Advanced Applications: (Robotics and	
	Lec 41	Computer Vision)	
	Lec 42	- · ·	

- 1. Artificial Intelligence: A Modern Approach (3rd Edition) Stuart Jonathan Russell, Peter Norvig; Prentice Hall (2010)
- 2. Artificial Intelligence: A New synthesis Nils J. Nilsson; Routledge

CSE-404

3.00 hour in alternative week, 0.75 Cr.

Artificial Intelligence Sessional

Pre-requisite: None

Rationale:

Hands on orientation with AI programming, intelligent agents along with how to representation, planning, learning and perception of knowledge of agents.

Objective:

- 1. To have general understanding of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.
- 2. To develop programming skills for AI applications and explore traditional AI techniques and algorithms.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Have general understanding of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.
- 2. Develop programming skills for AI applications.
- 3. Exposure to traditional AI techniques and algorithms.

Course Contents:

Hands on orientation with AI programming, intelligent agents along with representation, planning, learning and perception of knowledge of agents.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)												
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12	
Have general understanding of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.							V						
Develop programming skills for AI applications.								٧					
Exposure to traditional AI techniques and algorithms.											٧		

Week	Lecture	Topics
1	Lec 1	Orientation with AI practical areas
	Lec 2	A* search algorithm implementation
	Lec 3	
2	Lec 4	Problem solving using A* search
	Lec 5	Assignment on A* search
	Lec 6	
3	Lec 7	Project Idea Approval
	Lec 8	
	Lec 9	
4	Lec 10	Orientation of Prolog
	Lec 11	Problem solving using prolog
	Lec 12	
5	Lec 13	Introduction with swift programming
	Lec 14	Problem solving using swift programming
	Lec 15	Project Progress
6	Lec 16	Implementation of CSP
	Lec 17	Problem solving using CSP
	Lec 18	
7	Lec 19	Final Quiz and Viva
	Lec 20	Project Final Submission and Presentation
	Lec 21	

Computer Interfacing

Pre-requisite: None

Rationale:

This course introduces basic concepts and techniques for interfacing a microcontroller or microprocessor to external devices for data collection and process control and developing the related software required. It is aimed at students interested in data acquisition and real-time control systems, design and construct simple control, data logging system incorporating input/output to and from external devices and design simple control system for stepper and DC motor.

Objective:

- 1. To enable the students familiar to interface external components (peripherals, sensors, PPIs, PICs etc.) with computer systems.
- 2. To enhance the knowledge on basic working principle and different applications of basic microcomputer and microcontroller.
- 3. To enable the students capable of designing and constructing simple control system incorporating input/output to and from external devices.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe how to interface different types of external components (peripherals, sensors, PPIs, PICs etc.) with computer systems.
- 2. Escalate the capability of designing and constructing simple control system incorporating input/output to and from external devices.
- 3. Analyze the basic working principle of basic microcomputer, microcontroller and enhance applications of different hardware components.

Course Content:

I/O system; I/O devices, designing I/O systems; Programmable peripheral interface (interface to A/D and D/A converter); keyboard/display interface; Programmable timer; data acquisition systems, Optical interrupters and couplers, incremental encoders, interfacing; Programmable interrupt controller, DMA controller; floppy and hard-disk controller; serial communication interface; ISA. PCI, AGP, PS/2 and USB interface; Interfacing with power circuits, stepper motors, opto-isolation; controlling semiconductor power switches MOSFET, BJT. SCR. Triac and Solenoids; temperature, pressure, light sensors and transducers; Application of Opto-coupler and relays; Embedded Communication Systems, Embedded Computer Security. **Teaching-learning and Assessment Strategy:**

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

				Pro	gra	m C	Jutco	ome	(PC))		
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Describe how to interface different types of external components (peripherals, sensors, PPIs, PICs etc.) with computer systems	\checkmark											
2. Escalate the capability of designing and constructing simple control system incorporating input/output to and from external devices			\checkmark									
3. Analyze the basic working principle of basic microcomputer, microcontroller and enhance applications of different hardware components		\checkmark										

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2 Lec 3	Parallel data transfer, parallel printer interface, Keyboard Interface, Display Interface,I/0 system; I/O devices, designing I/O systems	
2	Lec 4 Lec 5 Lec 6	Interfacing to high power devices, Interface to AC power devices, interfacing to stepper motor	Class Test 1
3	Lec 7 Lec 8 Lec 9	D/A Applications and Interfacing to Microcomputers, A/D converters Specifications/types,	
4	Lec 10 Lec 11 Lec 12	Microcomputers based Scale, Microcomputers based industrial Process Control System, PID Controller	
5	Lec 13 Lec 14 Lec 15	Triac and Solenoids; temperature, pressure, light sensors and transducers	Class Test 2
6	Lec 16 Lec 17 Lec 18	D/A Converter Operation and Specifications, ISA. PCI, AGP, PS/2 and USB interface	

7	Lec 19	Embedded Communication Systems,	
	Lec 20	Embedded Computer Security	
	Lec 21		
8	Lec 22	Data Highways, Computer I/O Operations,	
	Lec 23	Programmed I/O, Interrupts, Vectored	
	Lec 24	Interrupt, Priority Interrupts using Priority	
		Encoder ,Priority Interrupt using a Daisy Chain	
9	Lec 25	Block Data Transfer, DMA, Parallel	
	Lec 26	Interface, SCSI, Serial Interface-	
	Lec 27	Synchronous and Asynchronous	Class Test 3
		Transmission	
10	Lec 31	DMA Controller 8257,RS232, null modem	
	Lec 32	connection, line drivers, Single-ended	
	Lec 33	Transmission, balanced transmission,	
		differential receiver	
11	Lec 28	Disc and tape storage, Recording on a	
	Lec 29	Magnetic surface, Magnetic Disc Formats,	
	Lec 30	zoning, Interleaving, Magnetic recording	
		Code, Recording Codes, Run-length	
		limited (RLL),	
12	Lec 34	Disc formatting, Track seeking, Sector	
	Lec 35	Location, Optical Storage, Forms of	
	Lec 36	Optical Disc storage, Optical Reading	
		Mechanism	Class Tast 4
13	Lec 37	CD-ROM Optical Disks, WORM, Optical	Class Test 4
	Lec 38	Positioning, Magneto Optical Disk,	
	Lec 39	Performance Enhancers	
14	Lec 40	Memory Interfacing, Memory Space	
	Lec 41	Management	
	Lec 42		

- 1. The Intel Microprocessors (8th Edition) Barry B Brey; Pearson (2008)
- 2. Microprocessors and Interfacing (2nd Edition) Douglas V Hall; McGraw Hill (2005)
- 3. Computer Peripherals (3rd Edition) Cook and White; Butterworth-Heinemann (1995)

CSE-407

Applied Statistics and Queuing Theory

Pre-requisite: None

Rationale:

To provide in deep idea of working with data sets and impact of data sets as well as application of queuing models in Computer Science domain.

Objective:

- 1. To discuss the theories of applied statistics.
- 2. To select the practical applications in the field of Information Technology and explain the real life applications of statistics.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss the theories of applied statistics.
- 2. Select the practical applications in the field of Information Technology.
- 3. Explain the real life applications of statistics.

Course Content:

Introduction; Frequency distribution, Mean, median, Mode and other measure of central tendency standard deviation and other measure of dispersion, Moments, Skewness and kurtosis, Elementary probability theory, Characteristics of distributions, elementary sampling theory, Estimation, Hypothesis testing and regression analysis. Probability distribution and expectations, discontinuous probability distribution, e.g. binomial, position and negative binomial. Continuous probability distributions, e.g. normal and exponential. Queuing Theory: Stochastic processes, Discrete time Markov chain and continuous time Markov Chain. birth-death process in queuing. Queuing models: M/M/1,M/M/C,M/G/1,M/D/1,G/M/1 solution of network of queue-closed queuing models and approximate models. Application of queuing models in Computer Science.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Discuss the theories of applied statistics.												
Select the practical applications in the field of Information Technology.												
Explain the real life applications of statistics.						\checkmark						

Lecture Schedule

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction	
	Lec 2	Frequency distribution	
	Lec 3		
2	Lec 4	Central Tendency	
	Lec 5	Mean, median, Mode	
	Lec 6		
3	Lec 7	Standard deviation	Class Test 1
	Lec 8	Dispersion	
	Lec 9		
4	Lec 10	Moments	
	Lec 11	Skewness and kurtosis	
	Lec 12		
5	Lec 13	Elementary probability theory	
	Lec 14	Characteristics of distributions	
	Lec 15		Class Test 2
6	Lec 16	Elementary sampling theory	Class Test 2
	Lec 17	Estimation	
	Lec 18		
7	Lec 19	Hypothesis testing and regression analysis	
	Lec 20		
	Lec 21		
8	Lec 22	Probability distribution	
	Lec 23	Expectations	
	Lec 24		
9	Lec 25	Discontinuous probability distribution	
	Lec 26	Binomial distribution	
	Lec 27	Position and negative binomial distribution	Class Test 3
10	Lec 31	Continuous probability distributions	
	Lec 32	Normal Distribution	
	Lec 33	Exponential Distribution	
11	Lec 28	Queuing Theory: Stochastic processes	
	Lec 29	Discrete time Markov chain	
	Lec 30		
12	Lec 34	Continuous time Markov Chain	
	Lec 35	Birth-death process in queuing	
	Lec 36		Class Test 4
13	Lec 37	Queuingmodels:	
	Lec 38	M/M/1,M/M/C,M/G/1,M/D/1,G/M/1	
	Lec 39	Queue-closed queuing models	
14	Lec 40	Approximate models	
	Lec 41	Application of queuing models	
	Lec 42		

Text and Ref Books:

- 1. Applied Statistics Rebecca (Becky) M. (Margaret) Warner
- 2. Applied Statistics for Engineers and Scientists Jay L. Devore and Nicholas R. Farnum
- 3. An Introduction to Queuing Theory U. Narayan Bhat
- 4. Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling William J. Stewart

CSE-460

9 hours in alterative weeks, 2.25 Cr.

Integrated Design Project/Capstone Project 1

Pre-requisite: CSE 105, CSE 203, CSE 215, CSE 205 and their corresponding sessionals and CSE 220.

Rationale:

Culminating demonstration of skills and knowledge achieved to date to apply and solve real life problems solvable through computer technology.

Objective:

To apply technical knowledge and skills for further research and design of computer system at professional engineering scale.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Develop systems' requirement specification from top-level customer requirements.
- 2. Analyse and compare design alternatives, at the system and subsystem levels, and use measures of performance or other criteria to rank alternatives.
- 3. Plan and organize an engineering design project using tools such as Gantt charts to develop a work breakdown structure, develop a schedule including milestones, and estimate effort and costs incorporating the ethical, financial and environmental issues.
- 4. Develop a design concept and elaborate it through to a detailed design by decomposing a system concept into component subsystems, identifying the subsystem requirements and applicable standards, and defining interfaces between the subsystems.
- 5. Build prototypes of key subsystems.

Course Content: Knowledge Acquisition:

Introduction and brief with software (Advance tool), Discussion and submission Project Proposal, Learning Version Control System: Github, Interface design, Database Connectivity: Sqlite, Json, Cloud, Firebase database, Google Api, Sensor.

Implementation:

Idea Submission, Objective, Methodology, Literature Review, High Level Design, Low Level Design, Evaluation and feedback, Design & Partial Implementation (Prototype/Demo).

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, rubrics on problem analysis, literature review and designing prototype.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

			Program Outcome (PO)										
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	
Develop system requirements from top-level customer requirements.													
Analyse and compare design alternatives, at the system and subsystem levels, and use measures of performance or other criteria to rank alternatives.					\checkmark								
Plan and organize an engineering design project using tools such as Gantt charts to develop a work breakdown structure, develop a schedule including milestones, and estimate effort and costs.						\checkmark							
Develop a design concept and elaborate it through to a detailed design by decomposing a system concept into component subsystems, identifying the subsystem requirements and applicable standards, and defining interfaces between the subsystems													
Build prototypes of key subsystems.													

Week	Topics	Remarks
1	Introduction and brief with software (Advance tool)	
2	Learning Version Control System: GitHub	
3	Interface Design, activity and navigation.	
4	Database Connectivity: SQLite, JSON, Cloud*	
	Firebase database	
5	Google Api	
6	Sensor	
7	Database Integration with the application	
8-9	Topic Selection and Project Plan	
10-11	Objective, Methodology, Literature Review	
12-14	Design & Partial Implementation (Prototype/Demo)	

- 1. Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch Guides) 3rd Edition
- 2. Professional Android, Reto Meier, Ian Lake; 4th Edition

CSE-4XO Option-I 3 hours in a week, 3 Cr.

LEVEL-4 TERM-II

CSE-400

6 hours in a week, 3.00 Cr.

Thesis

Pre-requisite: None

Rationale:

This course motivates to go neck-deep in research, synthesize it, and make a point or look at something in a different way after going through all of it.

Objective:

To study, analyze and provide solutions for the problems of Computer Science and Engineering.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Select, analyze and classify a particular field to do research.
- 2. Solve real life complex problems
- 3. Explain and describe the time-cost estimation and ethical values.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Select, analyze and classify a particular field to do research.		\checkmark										
2. Solve real life complex problems.			\checkmark									
3. Explain and describe the time-cost estimation and ethical values.								\checkmark				

CSE-411

VLSI Design

Pre-requisite: None

Rationale:

This course motivates to enhance the ability to design large integrated digital electronic circuits using various logic and circuit design techniques and contribute to the electronics engineering and have a better understanding of different characteristics of such circuits.

Objective:

- 1. To recognize different logical components as well as their interconnection and design various integrated electronic circuits to perform certain digital functions.
- 2. To study and analyze different properties, behaviour and performance metrics of different integrated digital electronic circuits.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnection.
- 2. Select, analyze and create models of moderately sized CMOS circuits that realize specified digital functions.
- 3. Solve and apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect, and to verify the functionality, timing, power, and parasitic effects.
- 4. Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes.
- 5. Enhance one's ability to complete a significant VLSI design project, having a set of objective criteria and design constraints.

Course Content :

VLSI design methodology: Top-down Design Approach, Technology Trends and Design Automation Algorithms; Introduction to CMOS Inverters and Basic Gates; CMOS Fabrication Process and Layout; CMOS Circuit Characteristics and Performance Estimation; Buffer Circuit Design; Introduction Bi-CMOS Circuits; Complex CMOS Gates; CMOS layout design rules, CMOS Building Blocks - Adder, Comparator, Multiplier, Counter, and Shifter; Data Path and Memory structures. Design Methodology and Tools; PLA, FPGA, cell-based and full custom design methods, System-on chip design, Hardware modeling - Hardware Modeling Languages, Logic Networks, State Diagrams, Data-flow and Sequencing Graphs, Behavioral Optimization; Floor Planning and Architecture Design.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Assessment Methods & their Weights:

Assessment Method	(100%)					
Class Assessment						
Class Participation	05					
Class Class Participation	05					
Class Tests/Assignment/Presentation	20					
Exam						
Final exam	70					

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the Course			J	Pro	gra	m C	outc	ome	e (P	O)		
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Describe mathematical methods and circuit												
analysis models in analysis of CMOS digital												
electronics circuits, including logic components												
and their interconnection.	\checkmark											
2. Select, analyze and create models of												
moderately sized CMOS circuits that realize												
specified digital functions.		\checkmark	\checkmark									\checkmark
3. Solve and apply CMOS technology-specific												
layout rules in the placement and routing of												
transistors and interconnect, and to verify the												
functionality, timing, power, and parasitic												
effects.			\checkmark			\checkmark					\checkmark	\checkmark
4. Have an understanding of the characteristics												
of CMOS circuit construction and the												
comparison between different state-of-the-art												
CMOS technologies and processes.						\checkmark	\checkmark			\checkmark		
5. Enhance one's ability to complete a												
significant VLSI design project, having a set of												
objective criteria and design constraints.						\checkmark		\checkmark			\checkmark	\checkmark

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to VLSI design	
	Lec 2	diodes, BJTs and MOSFETs	
	Lec 3	NMOS and CMOS	
2	Lec 4	Internal Structure of MOSFETs	
	Lec 5	Hierarchical Design	
	Lec 6	Inverter Principles	
3	Lec 7	Threshold Voltage	Class Test 1
	Lec 8	Ids Calculation for Saturation Region	
	Lec 9	Ids Calculation for Resistive Region	
4	Lec 10	Characteristics Curves	Class Test 2
	Lec 11	Characteristics Curves (Contd.)	Class Test 2

	Lec 12	NMOS Inverter with Resistive Load	
5	Lec 13	NMOS Inverter with Enhancement Load	
	Lec 14	Inverter Ratio for NMOS Inverter with	
		Enhancement Load	
	Lec 15	Problems with Enhancement Transistor	
6	Lec 16	NMOS Inverter with Depletion Load	
	Lec 17	Rise Time Calculation	
	Lec 18	Fall Time Calculation	
7	Lec 19	CMOS Characteristics Curve	
	Lec 20	CMOS Power and Transfer Curve	
	Lec 21	Pass Transistor Principles	
8	Lec 22	Pass Transistor NMOS	
	Lec 23	Ratioless NMOS Inverter	
	Lec 24	CMOS Pulse Gate	
9	Lec 25	Buffer Circuits	
	Lec 26	Buffer Chain	
	Lec 27	Super Buffer	Class Test 3
10	Lec 31	Power Dissipation	
	Lec 32	Static Power Dissipation	
	Lec 33	Dynamic Power Dissipation	
11	Lec 28	Short Circuit Power Dissipation	
	Lec 29	CMOS Noise Margin	
	Lec 30	CMOS Noise Margin (Contd.)	
12	Lec 34	NMOS Noise Margin	
	Lec 35	NMOS NAND and NOR Gates	
	Lec 36	CMOS NAND and NOR Gates	
13	Lec 37	Stick Diagrams	
	Lec 38	Design Rules of Geometric Layout	Class Test 4
	Lec 39	Circuit Design using Stick Diagrams and	JIA33 I COL 4
		Geometric Layout	
14	Lec 40	n-well Formation	
	Lec 41	Oxide Layer Formation	
	Lec 42	Cross Section of CMOS	

- 1. Modern 1.Modern VLSI Design: System-on-Chip Design (3rd Edition) Wayne Wolf; Prentice Hall (2002)
- 2. CMOS VLSI Design- A Circuit and System Perspective (3rd Edition) Neil H.E. Weste, David Harris and Ayan Banerjee; Pearson (2009)

CSE-413

Computer Graphics

Pre-requisite: None

Rationale:

Motivates to enhance the ability in order to rapidly visualize, design and modify different types of shapes, structures and images interactively that is absolutely mandatory in the field of engineering and imaging technology.

Objective:

- 1. To provide a comprehensive introduction to computer graphics leading to the ability to understand contemporary terminology, progress, issues, and trends.
- 2. To introduce computer graphics techniques, focusing on 3D modeling, image synthesis, and rendering.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss the algorithmic and mathematical tools used to create a variety of digital images and effects.
- 2. Demonstrate three main subjects within computer graphics, modeling, rendering, and animation.
- 3. Select and analyze fundamentals such as digital image representation, color perception, image formation and image processing.

Course Content :

Introduction to computer graphics and its applications; Principles of raster image generation; Light and Color models; Example of a graphics API; Graphics primitives; Graphics hardware; Graphics pipeline; Coordinate convention; Scan conversion; Clipping; Modeling transformations; Viewing transformations; Projection transformations; Polygons and polygon meshes; Curves and surfaces; Hidden lines and surface removal; Introduction to rendering including shading models, textures, ray tracing, and radiosity; Introduction to computer animation and kinematics; Fractals; Graphics programming using OpenGL 4.0 and above.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the Course		Program Outcome (PO)										
		2	3	4	5	6	7	8	9	10	11	12
1. Discuss the algorithmic and												
mathematical tools used to create a	\checkmark											
variety of digital images and effects.												
2. Demonstrate three main subjects within												
computer graphics, modeling, rendering, and				\checkmark								
animation.												
3. Select and analyze fundamentals such as												
digital image representation, color perception,		\checkmark										
image formation and image processing.												

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Computer Graphics	
	Lec 2	Applications of Computer graphics	
	Lec 3	Standard Graphics Primitives	
2	Lec 4	Principles of Raster Image Generation	
	Lec 5	Graphics Hardware	
	Lec 6	Graphics Pipeline	Class Test 1
3	Lec 7	Coordinate Convention	— Class Test 1
	Lec 8	Scan Convention	
	Lec 9	Example of a Graphics API	
4	Lec 10	Introduction to OpenGL	
	Lec 11	Graphics Programming	
	Lec 12	Graphics Programming (Contd.)	
5	Lec 13	Point Clipping	
	Lec 14	Line Clipping	
	Lec 15	Polygon Clipping	Class Test 2
6	Lec 16	Modeling Transformations	
	Lec 17	Modeling Transformations (Contd.)	
	Lec 18	Modeling Transformations (Contd.)	
7	Lec 19	Viewing Transformations	
	Lec 20	Viewing Transformations (Contd.)	
	Lec 21	Viewing Transformations (Contd.)	
8	Lec 22	Projection Transformations	
	Lec 23	Projection Transformations (Contd.)	
	Lec 24	Projection Transformations (Contd.)	

			Class Test 3
9	Lec 25	Polygons	
	Lec 26	Polygons (Contd.)	
	Lec 27	Polygon Meshes	
10	Lec 31	Curves	
	Lec 32	Surfaces	
	Lec 33	Surfaces (Contd.)	
11	Lec 28	Introduction to Shading Models	
	Lec 29	Rendering	
	Lec 30	Hidden Lines and Surface Removal	
12	Lec 34	Introduction to Computer Animation	
	Lec 35	Kinematics	
	Lec 36	Fractals	
13	Lec 37	Textures	
	Lec 38	Ray Tracing	Class Test 4
	Lec 39	Radiosity	
14	Lec 40	Color Perception	
	Lec 41	Color Models	
	Lec 42	Light Models	

- 1. Theory and Problems of Computer Graphics (3rd Edition) Zhigang Xiang, Roy A. Plastock; McGraw Hill (2000)
- 2. Computer Graphics C Version (3rd Edition) Donald Hearn, M. Pauline Baker; Pearson Prentice Hall (2004)
- 3. Computer Graphics Principle and Practice (3rd Edition) Donald Hearn, M. Pauline Baker; Addison-Wesley Professional (2013)

CSE-414

Computer Graphics Sessional

Pre-requisite: None

Rationale:

This course motivates to develop and modify 2D and 3D visualization and transformation of any geometric object by using graphics library as well as working with texturing, lighting and coloring of such objects to develop different types of digital images with various effects.

Objective:

- 1. To develop 2D, 3D and animation graphics project using OpenGL graphics library.
- 2. To develop projects using lighting, coloring and texturing techniques.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Achieve a basic idea about OpenGL graphics library.
- 2. Design and develop 2D and 3D graphical geometric objects using OpenGL.
- 3. Learning simple animation, lighting, coloring and texturing.

Course Content :

Introduction to OpenGL, Drawing 2D geometric object, Simple 2D animation and modeling transformation, Drawing 3D geometric object, Viewing transformation and Texturing and lighting.

Teaching-learning and Assessment Strategy:

Lectures, class performances, project, assignment, viva, presentation, quiz.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Achieve a basic idea about OpenGL graphics library.							\checkmark					
2. Design and develop 2D and 3D graphical geometric objects using OpenGL.						\checkmark						
3. Learning simple animation, lighting, coloring and texturing.									\checkmark			

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to OpenGL (GLSL)	
	Lec 2	Discussion on Project 1	
	Lec 3	Discussion on Project 1 (Contd.)	
2	Lec 4	Programming with OpenGL (GLSL)	
	Lec 5	Lab Assignment	
	Lec 6	Home Assignment	
3	Lec 7	Programming with OpenGL (GLSL) (Contd.)	Class Test 1
		Lab Assignment	Class Test I
	Lec 8	Home Assignment	
	Lec 9		
4	Lec 10	Introduction to Animation (with Blender)	
	Lec 11	Animation Project Discussion	
	Lec 12	Animation Project Discussion (Contd.)	
5	Lec 13	Project 1 Demo and Submission	
	Lec 14	Project 1 Demo and Submission (Contd.)	
	Lec 15	Project 1 Demo and Submission (Contd.)	Class Test 2
6	Lec 16	Discussion on Project 2	- Class Test 2
	Lec 17	Discussion on Project 2 (Contd.)	
	Lec 18	Discussion on Project 2 (Contd.)	
7	Lec 19	Discussion on Project 2	
	Lec 20	Discussion on Project 2 (Contd.)	
	Lec 21	Discussion on Project 2 (Contd.)	
8	Lec 22	Animation Project Submission	
	Lec 23	Animation Project Submission (Contd.)	
	Lec 24	Report Submission	
9	Lec 25	Animation Project Submission	
	Lec 26	Animation Project Submission (Contd.)	Class Test 3
	Lec 27	Report Submission	Class Test 3
10	Lec 31	Project 2 Initial Demo	
	Lec 32	Project 2 Initial Demo (Contd.)	

	Lec 33	Project 2 Initial Demo (Contd.)	
11	Lec 28	Project 2 Initial Demo	
	Lec 29	Project 2 Initial Demo (Contd.)	
	Lec 30	Project 2 Initial Demo (Contd.)	
12	Lec 34	Project 2 Final Demo and Submission	
	Lec 35	Project 2 Final Demo and Submission (Contd.)	
		Project 2 Final Demo and Submission (Contd.)	
	Lec 36		
13	Lec 37	Project 2 Final Demo and Submission	
	Lec 38	Project 2 Final Demo and Submission (Contd.)	Class Test 4
		Project 2 Final Demo and Submission (Contd.)	
	Lec 39		
14	Lec 40	Quiz	
	Lec 41	Viva	
	Lec 42	Viva (Contd.)	

OpenGL Programming Guide: The Official Guide to Learning OpenGL (8th Edition)

 Dave Shreiner, Graham Sellers, John Kessenich and Bill Licea-Kane; Addison Wesley Professional (2013)

CSE-417

3 hours in a week, 3.00 Cr.

Engineering Management

Pre-requisite: None

Rationale:

This course motivates engineers to perform under a standard of professional behavior that requires adherence to the highest principles of ethical conduct and manage the resources and decisions effectively. It elevates the profession and raises future standards and imprints on individual moral mindsets and behaviors.

Objective:

- 1. To identify and analyze practical legal problems commonly encountered in computing industry and formulate solutions to some of the legal problems.
- 2. To gain the ability to continue professional development with an understanding of the legal issues, and to critically assess the codes of professional conduct for computer professional.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate awareness of different management and control frameworks and their impact on the Project Management discipline.
- 2. Solve and apply cognitive skills and ability to identify, analysis, and articulate the importance of team building, project risk, and time cost management.

- 3. Using management software to help plan and manage information technology projects.
- 4. Explain the theoretical aspects of 'ethics', 'social norms', 'virtues', 'values', 'legal bindings in professional fields' etc.

Course Content:

Engineering Management: Introduction to Project Management; Principles of management, Project Integration Management; Project Scope Management; Project Time Management; Project Cost Management; Project Quality Management; Project Human Resource Management; Project Communications Management; Project Risk Management; Project Procurement Management; MIS: Introduction, Decision Support Systems, MIS in decision making, Development of communication skills. Concept of Invention, Innovation, and Entrepreneurship.

Engineering Ethics: Introduction to Ethics. Theories of Ethics. Principles of Engineering Ethics.

Obligation of an engineer to the clients. Ethical expectation: Employers and employees, interprofessional relationship, Professional Organizations, standards and codes: Fundamental Canons, NSPE codes, IEEE codes of conduct, ACM codes; Institutionalization of ethical conduct. Ethical Dilemmas, Choices (Whistle Blowing), Moral framework for resolving Ethical dilemmas, Computer Ethics: Computer Crime and Cyber Security, Privacy and Confidentiality issue in CSE, Legal Framework in CSE-Copyright laws, ICT Act, Right To Information (RTI), Patents, Royalty etc. Ethical Challenges for CSE Engineers with the advancement of Technology; Case studies related to ethical issues in ICT and other Engineering disciplines.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

]	Prog	gran	n Oı	ıtco	me	(PC))		
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Demonstrate awareness of different management and control frameworks and their impact on the Project Management discipline.				\checkmark								
2. Solve and apply cognitive skills and ability to identify, analysis, and articulate the importance of team building, project risk, and time cost management.		\checkmark										
3. Using management software to help plan and manage information technology projects.					\checkmark							
4. Explain the theoretical aspects of 'ethics', 'social norms', 'virtues', 'values', 'legal	\checkmark											

bindings in professional fields' etc.													
---------------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Engineering Management	
	Lec 2	Importance of Engineering Management	
		(Contd.)	
	Lec 3	Importance of Engineering Management	
2	Lec 4	Introduction to Project Management	
	Lec 5	Introduction to Project Management (Contd.)	
	Lec 6	Principles of Management	Class Test 1
3	Lec 7	Project Integration Management	
	Lec 8	Project Scope Management	
	Lec 9	Project Time Management	
4	Lec 10	Project Cost Management	
	Lec 11	Project Quality Management	
	Lec 12	Project Human Resource Management	
5	Lec 13	Project Communication Management	
	Lec 14	Project Risk Management	
	Lec 15	Project Procurement Management	
6	Lec 16	Introduction to MIS	Class Test 2
	Lec 17	Decision Support System	
	Lec 18	MIS in Decision Making	
7	Lec 19	Development of Communication Skill	
	Lec 20	Concept of Invention and Innovation	
	Lec 21	Concept of Entrepreneurship	
8	Lec 22	Introduction to Ethics	
	Lec 23	Theories of Ethics	
	Lec 24	Principles of Engineering Ethics	
9	Lec 25	Ethical expectation	
	Lec 26	Employers and Employees Relationship	
	Lec 27	Obligation of an Engineer to Clients	Class Test 3
10	Lec 31	Professional Organization: IEEE, ACM	
	Lec 32	Standards and Codes	
	Lec 33	Institutionalization of Ethical Conduct	
11	Lec 28	Ethical Dilemmas	
	Lec 29	Choices (Whistle Blowing)	
	Lec 30	Moral framework for resolving Ethical	
		dilemmas	
12	Lec 34	Computer Crime and Cyber Security Privacy	Class Test 4
	Lec 35	and Confidentiality Issue in CSE	

	Lec 36	Legal Framework in CSE-CopyRight laws
13	Lec 37 Lec 38 Lec 39	ICT Act Right To Information (RTI) Patents and Royalty
14	Lec 40 Lec 41 Lec 42	Ethical Challenges for CSE Engineers Case Studies Regarding Ethical Issues in ICT Case Studies Regarding Ethical Issues in ICT

- 1. Engineering Ethics Concepts and Cases (2nd Edition) Charles E. Harris. Jr., Michael S. Pritchard, Michael J. Rabins; Wadsworth Cengage Learning (2009)
- 2. Introduction to Engineering Ethics (3rd Edition) Schinzinger and Martin; McGraw Hill (2000)

CSE-462

3 hours in alternating week, 0.75 Cr.

Integrated Design Project/Capstone Project 2

Pre-requisite: CSE 460

Rationale:

Culminating demonstration of skills and knowledge achieved to date to apply and solve real life IT dependent problems using computer technology.

Objective:

Objective of this course is to combine engineering theory with rigorous research in design and development of computerized system considering the contextual ethical, financial and environmental issues.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Design appropriate tests to measure and evaluate the performance of prototype subsystems to determine whether they meet performance and interface requirements considering ethical, financial and environmental issues and recommend changes.
- 2. Constructively contribute to the accomplishments of a multidisciplinary team, including critical evaluation of self and team-member performance.
- 3. Communicate the team's logistical and technical approaches to the design project in a polished, co-authored, written proposal, using language and graphics appropriate to the technical discipline.
- 4. Succinctly report individual and team performance against the plan.
- 5. Describe organizational and technical plans and progress in oral presentations, using high-quality, informative, graphical and textual elements.

Course Content:

Knowledge Acquisition: Information gathering techniques, Design of an information system; Hardware components, pin configurations of microcontroller, peripherals, Sensors, PPIs, PICs, Use of Arduino, Raspberry Pi;

Implementation: Concept development, prototype enhancement, complete implementation, unit testing and integration testing with verification, feedback and improvement, result analysis and performance evaluation, report writing, paper submission, presentation and final evaluation.

Teaching-learning and Assessment Strategy:

Lectures, performances, assignments, rubrics on prototype design, implementation and report submission.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

			P	rog	grar	n O	outc	om	e (P	0)		
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Design appropriate tests to measure and evaluate the performance of prototype subsystems to determine whether they meet performance and interface requirements considering ethical, financial and environmental issues and recommend changes.			\checkmark				\checkmark	\checkmark				
Constructively contribute to the accomplishments of a multidisciplinary team, including critical evaluation of self and teammember performance.									\checkmark	\checkmark	\checkmark	
Communicate the team's logistical and technical approaches to the design project in a polished, co-authored, written proposal, using language and graphics appropriate to the technical discipline.										\checkmark		\checkmark

Succinctly report individual and team							
performance against the plan.					v		
Describe organizational and technical plans							
and progress in oral presentations, using						2	
high-quality, informative, graphical and						N	v
textual elements.							

Week	Lecture	Topics	Remarks
1	Lec 1-2	Orientation	
		Information gathering techniques	
2	Lec 3-4	Approval of Conceptual development of proposed	Project Plan
		project	
		Hands on session on designing information system	
3	Lec 5-6	Hands on session on hardware components and	Prototype Design
		microcontroller	
		Designing Prototype	
4	Lec 7-8	Hand on session on Arduino,	
		Programming on Arduino	
5	Lec 9-10	Hand on session Raspberry Pi	
		Programming on Raspberry Pi	
6	Lec 11-12	Flowchart and block diagram of the project	Prototype Design
		Prototype enhancement	
7	Lec 13-14	Unit testing and integration testing with verification	Implementation
		Submission of abstract of paper/report	Report
8	Lec 15-16	Feedback and improvement	Implementation
		Submission of introduction, methodology of	Report
		paper/report	
9	Lec 17-18	Result analysis and performance evaluation	Implementation
		Integration of result analysis in report	Report
10	Lec 19-20	Model of the project	
11	Lec 21-22	System architecture of the paper	Report
12	Lec 23-24	Project update following final timeline	
13	Lec 25-26	Implementation part of the paper	
		Draft of poster presentation	
14	Lec 27-28	Final Project submission	Report
		Final paper/report submission	
		Final poster print and presentation	

HUM-415

Financial and Managerial Accounting

Pre-requisite: None

Rationale:

This course introduces the preliminaries of accounting principles, cost classification and a variety of financial analysis - ratio analysis, capital budgeting, break-even analysis, cost-volume-profit analysis, contribution margin analysis etc. that is helpful for making important decisions of the management control system of any organization or business.

Objective:

- 1. To discuss the fundamentals of accounting, the use and effects of financial statement for a particular organization.
- 2. To analyze different types of cost and cost management for different components of a management control system or a business.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss, describe and interpret a financial accounting statement and the use of financial ratios. The student should be able to understand how the reporting might be affected by a particular (creative) business.
- 2. Enhance the various elements of a management control system (role, scope, drawbacks, implementation etc.).
- 3. Determine the variety of cost concepts to be applied in a management control system.
- 4. Select and analyze the nature of a business and outline main features of an appropriate control system.

Course Content:

Financial Accounting: Objectives and importance of accounting; Accounting as an information system. Computerized system applications in accounting. Recording system, double entry mechanism; account and their classification; Accounting equation: Accounting cycle: Journal, ledger, trial balance. Preparation of financial statements considering adjusting and closing entries; Accounting concepts (principles) and conventions. Financial statement analysis and interpretation: Ratio analysis. Cost and Management Accounting: Cost concepts and classification; Overhead cost: meaning and classification; Distribution of overhead cost: Overhead recover method/rate; Job order costing: preparation of job cost sheet and question price, Inventory valuation: absorption costing and marginal/variable costing technique; Cost-Volume-Profit analysis: meaning, break-even analysis, contribution margin analysis sensitivity analysis. Short-term investment decisions; relevant and differential cost analysis. Long-term investment decisions: capital budgeting, various techniques of evaluation of investments.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Discuss, describe and interpret a financial												
accounting statement and the use of	\checkmark											
financial ratios. The student should be able												
to understand how the reporting might be												
affected by a particular (creative) business.												
2. Enhance the various elements of a												
management control system (role, scope,				\checkmark								
drawbacks, implementation etc.).												
3. Determine the variety of cost concepts to be				/								
applied in a management control system.				V								
4. Select and analyze the nature of a business												
and outline main features of an appropriate		\checkmark										
control system.												

Week	Lecture	Topics	Class Test
1	Lec 1	Financial Accounting	
	Lec 2	Objectives of Accounting	
	Lec 3	Importance of Accounting	
2	Lec 4	Accounting as an Information System.	
	Lec 5	Computerized Applications in Accounting	
	Lec 6	Computerized Applications in Accounting	
		(Contd.)	Class Test 1
3	Lec 7	Recording System	Class Test I
	Lec 8	Double Entry Mechanism	
	Lec 9	Double Entry Mechanism (Contd.)	
4	Lec 10	Account Classification	
	Lec 11	Accounting Equation	
	Lec 12	Account Cycle	
5	Lec 13	Journal	
	Lec 14	Ledger	
	Lec 15	Trial Balance	Class Test 2
6	Lec 16	Financial Statement Preparation	Class Test 2
	Lec 17	Adjusting Entries	
	Lec 18	Closing Entries	
7	Lec 19	Accounting Principles	
	Lec 20	Accounting Convention	
	Lec 21	Accounting Convention (Contd.)	
8	Lec 22	Financial Statement Analysis	
	Lec 23	Financial Statement Interpretation	

	Lec 24	Ratio Analysis				
9	Lec 25	Cost Accounting				
	Lec 26	Management Accounting	Class Test 3			
	Lec 27	Cost Concept and Classification				
10	Lec 31	Distribution of Overhead Cost				
	Lec 32	Overhead Recover Method/Rate				
	Lec 33	Job Order Costing				
11	Lec 28	Preparation of Job Cost Sheet and Question				
	Lec 29	Price				
	Lec 30	Inventory Valuation				
		Absorption Costing				
12	Lec 34	Marginal/Variable costing Technique Cost-				
	Lec 35	Volume-Profit Analysis				
	Lec 36	Break-Even Analysis				
13	Lec 37	Contribution Margin Analysis				
	Lec 38	Sensitivity Analysis.	Class Test 4			
	Lec 39	Relevant and Differential Cost Analysis				
14	Lec 40	Long-term Investment Decisions				
	Lec 41	Capital Budgeting				
	Lec 42 Various Techniques of Evaluation of					
		Investments				

- 1. Managerial Accounting (14th Edition) Ray Garrison, Eric Noreen and Peter Brewer; McGraw Hill (2011)
- 2. Accounting Principles (12th Edition) Jerry J. Weygandt Paul D. Kimmel Donald E. Kieso; Wiley (2015)

3 hours in a week, 3.00 Cr.

CSE4XO

Option-II

CSE4XE

3 hours in a week, 3.00 Cr.

Option-II Sessional

Option-I

CSE-419

3 hours in a week, 3.00 Cr.

Advanced Algorithms

Pre-requisite: None

Rationale:

This course motivates to implement advanced methods of algorithmic design, analysis, and implementation. techniques that include amortization, randomization, word-level parallelism, bit scaling, dynamic programming, network flow, linear programming, fixed-parameter algorithms, approximation algorithms etc. to identify which algorithm will provide efficient result for a specific problem or context.

Objective:

- 1. To study advanced techniques and recognize the resource requirements of various algorithms and their applications to solve and approximate real life problems.
- 2. To analyze the complexity and design necessary parameters of different techniques and methods of advanced algorithms.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Select and explain a variety of algorithms with practical applications and the resource requirements of each.
- 2. Determine the most suitable algorithm for any given task and then apply it to the problem.
- 3. Demonstrate adequate comprehension of the theory of intractability and prove when certain kinds of problems are intractable.

Course Content :

Randomized Algorithms: Las Vegas and Monte Carlo Algorithms; Randomized Data Structures: Skip Lists; Amortized Analysis: Different methods, Applications in Fibonacci Heaps; Lower Bounds: Decision Trees, Information Theoretic Lower Bounds, Adversary Arguments; Approximation Algorithms: Approximation Schemes, Hardness of Approximation; Fixed Parameter Tractability: Parameterized Complexity, Techniques of designing Fixed Parameter Algorithms, Examples; Online Algorithms: Competitive Analysis, Online Paging Problem, kserver Problem; External Memory Algorithms; Advanced Data Structures: Linear and Non-linear Methods.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Select and explain a variety of												
algorithms with practical applications and		\checkmark										
the resource requirements of each.												
2. Determine the most suitable algorithm												
for any given task and then apply it to the			\checkmark									
problem.												
3. Demonstrate adequate comprehension of												
the theory of intractability and prove when				\checkmark								
certain kinds of problems are intractable.												

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Advanced Algorithms	
	Lec 2	Applications of Advanced Algorithms	
	Lec 3	Fundamental Algorithms versus Advanced	
		Algor thms	
2	Lec 4	Randomized Algorithms	
	Lec 5	Las Vegas Algorithm	
	Lec 6	Las Vegas Algorithm (Contd.)	Class Test 1
3	Lec 7	Monte Carlo Algorithm	
	Lec 8	Monte Carlo Algorithm (Contd.)	
	Lec 9	Randomized Data Structures	
4	Lec 10	Skip Lists	
	Lec 11	Amortized Analysis	
	Lec 12	Amortized Analysis Methods	
5	Lec 13	Amortized Analysis Methods (Contd.)	
	Lec 14	Applications in Fibonacci Heaps	
	Lec 15	Lower Bounds	Class Test 2
6	Lec 16	Decision Trees	
	Lec 17	Decision Trees (Contd.)	
	Lec 18	Information Theoretic Lower Bounds	
7	Lec 19	Adversary Arguments	
	Lec 20	Approximation Algorithms	
	Lec 21	Approximation Algorithms (Contd.)	
8	Lec 22	Approximation Schemes	
	Lec 23	Approximation Schemes (Contd.)	
	Lec 24	Hardness of Approximation	
9	Lec 25	Fixed Parameter Tractability	
	Lec 26	Parameterized Complexity	
	Lec 27	Parameterized Complexity (Contd.)	Class Test 3
10	Lec 31	Fixed Parameter Algorithms	Class Lest 3
	Lec 32		
	Lec 33		
		Techniques of Designing Fixed Parameter	

		Algorithms	
11	Lec 28	Online Algorithms	
	Lec 29	Online Algorithms (Contd.)	
	Lec 30	Online Algorithms (Contd.)	
12	Lec 34	Competitive Analysis	
	Lec 35	Online Paging Problem	
	Lec 36	k-server Problem	
13	Lec 37	External Memory Algorithms	
	Lec 38	External Memory Algorithms (Contd.)	Class Test 4
	Lec 39	External Memory Algorithms (Contd.)	
14	Lec 40	Advanced Data Structures	
	Lec 41	Linear Models	
	Lec 42	Non-linear Models	

- 1. An Introduction to Computational Learning Theory Michael J. Kearns , Umesh Vazirani; The MIT Press (1994)
- 2. Algorithm Design (1st Edition) Jon Kleinberg, ÉvaTardos; Pearson (2012)
- 3. Randomized Algorithms (1st Edition) Rajeev Motwani , Prabhakar Raghavan; Cambridge University Press (1995)
- 4. Probability and Computing: Randomized Algorithms and Probabilistic Analysis Michael Mitzenmacher, Eli Upfal; Cambridge University Press (2005)

CSE-421

3 hours in a week, 3.00 Cr.

Basic Graph Theory

Pre-requisite: None

Rationale:

Provides a framework to model a large set of problems in CS for better mathematical structures and pairwise relations between objects.

Objective:

- 1. To learn the standard uses of graphs as models and the fundamental theory about graphs with a sense of some of its modern applications.
- 2. To formulate algorithms to solve problems with graph theories

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Learn the standard uses of graphs as models and the fundamental theory about graphs with a sense of some of its modern applications.
- 2. Explain and discuss mathematical proofs, including an appreciation of why this is important.
- 3. Formulate algorithms to solve problems with graph theories

Course Content:

Graphs and their applications, Basic graph terminologies, Basic operations on graphs, Graph representations, Degree sequence and graphic sequence, Paths, cycles and connectivity, Network flow, Euler tours, Hamiltonian cycles Ear decomposition, Trees and counting of trees, Distance in graphs and trees, Graceful labeling, Matching and covering, Planar graphs, Digraphs, Graph coloring, Special classes of graphs.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Learn the standard uses of graphs as models and the fundamental theory about graphs with a sense of some of its modern applications.	\checkmark											
Explain and discuss mathematical proofs, including an appreciation of why this is important.				\checkmark								
Formulate algorithms to solve problems with graph theories			\checkmark									

Week	Lecture	Topics	Class Test
1	Lec 1	Graphs and their applications	
	Lec 2		
	Lec 3		
2	Lec 4	Basic graph terminologies	
	Lec 5		
	Lec 6		
3	Lec 7	Basic operations on graphs	Class Test 1
	Lec 8		
	Lec 9		
4	Lec 10	Graph representations	
	Lec 11		
	Lec 12		
5	Lec 13	Degree sequence and graphic sequence	
	Lec 14		
	Lec 15		
6	Lec 16	Paths	Class Test 2
	Lec 17	Cycles	
	Lec 18	Connectivity	
7	Lec 19	Network flow	
	Lec 20		
	Lec 21		

8	Lec 22	Euler tours	
	Lec 23	Hamiltonian cycles	
	Lec 24	Ear decomposition	
9	Lec 25	Trees and counting of trees	
	Lec 26		
	Lec 27		Class Test 3
10	Lec 31	Distance in graphs	
	Lec 32	Distance in trees	
	Lec 33		
11	Lec 28	Graceful labeling	
	Lec 29	Matching and covering	
	Lec 30		
12	Lec 34	Planar graphs	
	Lec 35		
	Lec 36		
13	Lec 37	Digraphs	
	Lec 38	Graph coloring	Class Test 4
	Lec 39		
14	Lec 40	Special classes of graphs	
	Lec 41		
	Lec 42		

- 1. Introduction to graph theory Douglas B West
- 2. Introduction to Graph Theory Robin J. Wilson, Pearson Education Asia

CSE-423

3 hours in a week, 3.00 Cr.

Fault Tolerant System

Pre-requisite: None

Rationale:

This course motivates to implement a feature on a system that enables a system to continue with its operations even when there is a failure on one part of the system and helps in fault isolation through various failure detection mechanisms.

Objective:

- 1. To detect and isolate faults on a system and design accordingly to achieve a fault tolerant system using different fault tolerance design techniques.
- 2. To test and analyze the faults in order to create a reliable and high performance system.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

1. Discuss, explain and analyze underlying notions of fault tolerance.

- 2. Model reliability of different types of systems.
- 3. Recognize defect avoidance and circumvention.
- 4. Identify methodologies of hardening systems.

Course Content :

Introduction of Fault Tolerant Systems and architectures; Goal and Application of Fault Tolerant computing, Fundamental Definitions, Design techniques to achieve fault Tolerance, Reliability Modeling Using Probability Theory, Fault detection and location in combinational and sequential circuits; Fault test generation for combinational and sequential circuits; Fault test generation for combinational and sequential circuits; Fault modeling; Faults in memory, memory test pattern and reliability; Performance monitoring, self-checking circuits, burst error correction and triple modular redundancy, Defect Avoidance, Defect Circumvention, Shield and Hardening, Yields Enhancement, Degradation Allowance.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Discuss, explain and analyze underlying notions of fault tolerance		\checkmark										
2. Model reliability of different types of systems.			\checkmark									
3. Recognize defect avoidance and circumvention.		\checkmark										
4. Identify methodologies of hardening systems.				\checkmark								

Mapping of Course Outcomes (CO) and Program Outcomes:

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Fault Tolerant Systems	
	Lec 2	Goals of Fault Tolerant Computing	
	Lec 3	Applications of Fault Tolerant Computing	
2	Lec 4	Fundamental Definitions	
	Lec 5	Design Techniques to Achieve Fault	
	Lec 6	Tolerance	
		Architecture of Fault Tolerant System	
3	Lec 7	Reliability Modeling using Probability Theory	Class Test 1
	Lec 8	Reliability Modeling using Probability Theory	
	Lec 9	(Contd.)	
		Fault Detection and Location	
4	Lec 10	Fault Detection and Location in Sequential	
	Lec 11	Circuit	
	Lec 12	Fault Detection and Location in	Clear Test 2
		Combinational Circuit	Class Test 2
		Fault Modeling	
5	Lec 13	Fault Test	

	Lec 14	Fault Test Generation for Sequential Circuit	
	Lec 15	Fault Test Generation for Combinational	
		Circuit	
6	Lec 16	Faults in Memory	
	Lec 17	Memory Test Pattern	
	Lec 18	Memory Test Reliability	
7	Lec 19	Performance Monitoring	
	Lec 20	Performance Monitoring (Contd.)	
	Lec 21	Self-checking circuits	
8	Lec 22	Errors	
	Lec 23	Error Types	
	Lec 24	Error Types (Contd.)	
9	Lec 25	Error Correction	
	Lec 26	Burst Error	
	Lec 27	Burst Error Correction	Class Test 3
10	Lec 31	N-modular Redundancy	
	Lec 32	Triple Modular Redundancy	
	Lec 33	Triple Modular Redundancy (Contd.)	
11	Lec 28	Defect	
	Lec 29	Defect Types	
	Lec 30	Defect Avoidance	
12	Lec 34	Defect Avoidance (Contd.)	
	Lec 35	Defect Circumvention	
	Lec 36	Defect Circumvention (Contd.)	
13	Lec 37	Hardening Systems	
	Lec 38	Methods of Hardening	Class Test 4
	Lec 39	Shield Hardening (Contd.)	
14	Lec 40	Yields Enhancement	
	Lec 41	Yields Enhancement (Contd.)	
	Lec 42	Degradation Allowance	

- 1. Design and Analysis of Fault Tolerant Digital System (1st Edition) Barry W. Johnson; Addison Wesley (1989)
- 2. Dependable Computing: A Multilevel Approach Behrooz Parhami
- 3. Fault-Tolerant Systems (1st Edition) Israel Koren, C. Mani Krishna; Morgan Kauffman (2010)

CSE-425

3 hours in a week, 3.00 Cr.

Basic Multimedia Theory

Pre-requisite: None

Rationale:

This course motivates to study the architecture, different standards of compressing and coding a

multimedia document; database, network and operating system issues, traffic and service issues, security issues and hence apply this knowledge to implement different multimedia applications.

Objective:

- 1. To apply different techniques and methods for developing secured and high quality multimedia applications for different context.
- 2. To recognize and analyze different issues storing, indexing, resource management, scheduling, security etc. of multimedia applications.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss indexing and storing multimedia data for multimedia document.
- 2. Explain disk placement, disk scheduling, searching techniques for multimedia document.
- 3. Discover and apply the knowledge acquired in developing multimedia applications audio and video conferencing, video on demand, and voice over IP.

Course Content :

Multimedia systems - introduction; Coding and compression standards; Architecture issues in multimedia; Operating systems issues in multimedia - real-time OS issues, synchronization, interrupt handling; Database issues in multimedia - indexing and storing multimedia data, disk placement, disk scheduling, searching for a multimedia document; Networking issues in multimedia - Quality-of-service guarantees, resource reservation, traffic specification, shaping, and monitoring, admission control; Multicasting issues; Session directories; Protocols for controlling sessions; Security issues in multimedia-digital water making, partial encryption schemes for video streams; multimedia applications – audio and video conferencing, video on demand, voice over IP.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Discuss indexing and storing multimedia data for multimedia document.	\checkmark											
2. Explain disk placement, disk scheduling,												
searching techniques for multimedia			,									
document.			V									
3. Discover and apply the knowledge												
acquired in developing multimedia												
applications – audio and video conferencing,												
video on demand, and voice over IP.				\checkmark								

Lecture Schedule

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Multimedia Systems	
	Lec 2	Introduction to Multimedia Systems (Contd.)	
	Lec 3	Application of Multimedia Systems	
2	Lec 4	Coding Standards	
	Lec 5	Compression Standards	
	Lec 6	Architecture Issues in Multimedia	
3	Lec 7	Architecture Issues in Multimedia (Contd.)	Class Test 1
	Lec 8	Operating System Issues in Multimedia	
	Lec 9	Real-time OS Issues	
4	Lec 10	Synchronization Issues	
	Lec 11	Interrupt Handling	
	Lec 12	Interrupt Handling (Contd.)	
5	Lec 13	Database Issues in Multimedia	
	Lec 14	Indexing Multimedia Data	
	Lec 15	Storing Multimedia Data	Class Test 2
6	Lec 16	Storing Multimedia Data (Contd.)	
	Lec 17	Disk Placement	
	Lec 18	Disk Scheduling	
7	Lec 19	Disk Scheduling (Contd.)	
	Lec 20	Searching for a Multimedia Document	
	Lec 21	Networking Issues in Multimedia	
8	Lec 22	Quality-of-Service guarantees	
	Lec 23	Resource Reservation	
	Lec 24	Traffic Specification	
9	Lec 25	Shaping	
	Lec 26	Monitoring	
	Lec 27	Admission Control	Class Test 3
10	Lec 31	Multicasting Issues	
	Lec 32	Multicasting Issues (Contd.)	
	Lec 33	Session Directories	
11	Lec 28	Protocols for Controlling Sessions	
	Lec 29	Protocols for Controlling Sessions (Contd.)	
	Lec 30	Security Issues in Multimedia	
12	Lec 34	Security Issues in Multimedia (Contd.)	
	Lec 35	Digital Water Making	
	Lec 36	Partial Encryption Schemes for Video	
		Streams	
13	Lec 37	Multimedia Applications	Class Test 4
	Lec 38	Audio Conferencing	U1033 I C3l 4
	Lec 39	Video Conferencing	
14	Lec 40	Video on Demand	
	Lec 41	Voice over IP	
	Lec 42	Voice over IP (Contd.)	

Text and Ref Books:

1. Multimedia: Computing, Communications & Applications (US Edition) - Ralf Steinmetz, Klara Nahrstedt; Prentice Hall (1995)

CSE-427

3 hours in a week, 3.00 Cr.

Digital Image Processing

Pre-requisite: None

Rationale:

Introduce the fundamentals of image processing and manipulation of television, medical imaging modalities such as X-ray or ultrasound, photography, security, astronomy and remote sensing.

Objective:

- 1. To describe image formation and the role human visual system plays in perception of gray and color image data.
- 2. To explain the basic elements and applications of image processing.
- 3. To select and analyze image sampling and quantization requirements and implications.
- 4. To perform Gray level transformations for Image enhancement.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe image formation and the role of human visual system in perception of gray and color image data.
- 2. Explain the basic elements and applications of image processing.
- 3. Select and analyze image sampling and quantization requirements and implications.
- 4. Perform Gray level transformations for Image enhancement.

Course Content :

Digital image fundamentals: visual perception, Light and Electromagnetic Spectrum, Image Sensing and Acquisition, Image Sampling and Quantization, Some basic relationships between pixels, Linear and Nonlinear operations; image transforms: First Fourier Transform (FFT), Discrete Cosine Transform (DCT), Karhunen and Loeve Transform (KLT), Wavelet transform and sub-band decomposition; image enhancement in the frequency domain and image restoration techniques, image compression techniques, image compression standards: JPEG,MPEG, H.261, and H.263, Image Segmentation.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the Course		Program Outcome (PO)												
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12		
Describe image formation and the role of human visual system in perception of gray and color image data.														

Explain the basic elements and applications of image processing.	\checkmark							
Select and analyze image sampling and quantization requirements and implications.		\checkmark						
Perform Gray level transformations for Image enhancement.			\checkmark					

Week	Lecture	Topics	Class Test
1	Lec 1	Digital image fundamentals	
	Lec 2	Visual perception	
	Lec 3	Light and Electromagnetic Spectrum	
2	Lec 4	Image Sensing and Acquisition	
	Lec 5	Image Sampling and Quantization	
	Lec 6	Basic relationships between pixels	
3	Lec 7	Linear and Nonlinear operations	Class Test 1
	Lec 8	Image transforms	
	Lec 9	First Fourier Transform (FFT)	
4	Lec 10	Discrete Cosine Transform (DCT)	
	Lec 11	Karhunen and Loeve Transform (KLT)	
	Lec 12		
5	Lec 13		
	Lec 14	Wavelet Transform	
	Lec 15		Class Test 2
6	Lec 16		Class Test 2
	Lec 17	Sub-Band Decomposition	
	Lec 18		
7	Lec 19	Image restoration technique	
	Lec 20	Properties of Noise	
	Lec 21	Estimation of Noise Parameters	
8	Lec 22	Filters	
	Lec 23	Mean Filter	
	Lec 24	Bandpass and Band reject Filter	
		Notch Filter and Inverse Filter	
9	Lec 25	Color Image Processing	Class Test 3
	Lec 26	Fundamentals, Models	
	Lec 27	Smoothing and Sharpening	
10	Lec 31	Image compression techniques	
	Lec 32	Coding Redundancy	
	Lec 33	Measuring Image Information	
11	Lec 28	Image compression standards	
	Lec 29	JPEG, MPEG, H.261, and H.26	
	Lec 30		
12	Lec 34	Image Enhancement in the Frequency	
	Lec 35	Domain	
	Lec 36		
13	Lec 37	Image Segmentation	- Class Test 4
	Lec 38	Detection of Discontinuities	
	Lec 39	Thresholding	

14	Lec 40	Edge Linking	
	Lec 41	Boundary Detection	
	Lec 42		

1. Digital Image Processing (3rd/2nd Edition) - R. C. Gonzalez and R.E. Woods; Pearson Prentice Hall (2009)

CSE-429

3 hours in a week, 3.00 Cr.

Data and Network Security

Pre-requisite: None

Rationale:

To gather brief review of computer crimes and causes, Internet, strategies, crime prevention, security.

Objective:

- 1. To understand the development of security, traditional encryption, security attacks and the fundamental security objectives
- 2. To determine and analyze the security objectives, attacks, and models, so is able to recognize the security requirements in real-life cases.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Understand the development of security, traditional encryption, security attacks and the fundamental security objectives
- 2. Determine the security objectives, attacks, and models, so is able to recognize the security requirements in real-life cases.
- 3. Analyze the design and implementation issues of a real-life security solution.

Course Content :

Overview, Symmetric cipher, Classical encryption technique, Block cipher and the data encryption standard (DES), Triple DES, Introduction to finite fields, Advanced Encryption Standard, Contemporary Symmetric Ciphers, confidentiality using symmetric encryption public, Key encryption and Hash functions, Public-key Cryptography, RSA algorithm, Key management, Diffie-Hellman key exchange, Other Public Key Cryptosystem, Message Authentication and Hash function, Hash Algorithm, Digital Signatures and Authentication protocols, Network Security practice, Authentication application, Wireless Network Security, Electrical Mail security, IP security, Web security, System security, Intruders, Malicious software and Firewall, Legal and Ethical Aspects.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Understand the development of security, traditional encryption, security attacks and the fundamental security objectives	٧											
Determine the security objectives, attacks, and models, so is able to recognize the security requirements in real-life cases.		٧										
Analyze the design and implementation issues of a real-life security solution.			٧									

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction	
	Lec 2	Symmetric cipher	
	Lec 3		
2	Lec 4	Classical encryption technique	
	Lec 5	Block cipher	
	Lec 6		
3	Lec 7	Data Encryption Standard (DES)	Class Test 1
	Lec 8	Triple DES	
	Lec 9		
4	Lec 10	Introduction to finite fields	
	Lec 11	Advanced Encryption Standard	
	Lec 12		
5	Lec 13	Contemporary Symmetric Ciphers	
	Lec 14	Symmetric Encryption	
	Lec 15		Class Test 2
6	Lec 16	Key Encryption	Class Test 2
	Lec 17	Hash Functions	
	Lec 18		
7	Lec 19	Public-key Cryptography	
	Lec 20	RSA Algorithm	
	Lec 21	Key Management	
8	Lec 22	Diffie-Hellman key exchange	
	Lec 23	Public Key Cryptosystem	
	Lec 24		
9	Lec 25	Message Authentication and Hash function	
	Lec 26	Hash Algorithm	
	Lec 27		Class Test 3
10	Lec 31	Digital Signatures	
	Lec 32	Authentication protocols	
	Lec 33		
11	Lec 28	Network Security practice	
	Lec 29	Authentication application	

	Lec 30	Wireless	
12	Lec 34	Network Security	Class Test 4
	Lec 35	Electrical Mail security	
	Lec 36	IP security	
13	Lec 37	Web security	
	Lec 38	System security	
	Lec 39	Intruders	
14	Lec 40	Malicious software and Firewall	
	Lec 41	Legal and Ethical Aspects.	
	Lec 42		

- Cryptography and Network Security William Stallings;
 Cryptography and Network Security- Behrouz A. Forouzan;

CSE-431

Object Oriented Software Engineering

Pre-requisite: None

Rationale:

This course provides in depth concepts, properties, relationships of object driven software, exception handling and reusable library.

Objective:

- 1. To describe various O-O concepts, their properties, relationships along with model/ represent considering constraints.
- 2. To design, develop and explain various modeling techniques to model different perspectives of Object-Oriented Software Design.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe various O-O concepts along with their applicability contexts.
- 2. Identify domain objects, their properties, and relationships among them.
- 3. Model/ represent domain constraints on the objects and (or) on their relationships.
- 4. Develop design solutions for problems on various O-O concepts.

Course Content:

The object-oriented approach within the context of software engineering, the language, basic (procedural) elements of language: what an Eiffel program is, what the instruction set is, and how to declare and use entities (variables) and routines; The concepts underlying the object-oriented approach: modularity, inheritance, and dynamic binding, case study from the management information-system domain; Environment matters: system configuration, interfacing with external software, and garbage collection. Advanced issues involving exception handling, repeated inheritance, typing problems, and parallelism; object-oriented software engineering process, concentrating on specific guidelines facilitate the translation OOAD to a maintainable Addresses verification and validation (V&V) issues of Eiffel software systems built in a software engineering context; Building reusable libraries; The building of a parallel linear algebra library (Paladin).

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Describe various O-O concepts along with their applicability contexts.	\checkmark											
Identify domain objects, their properties, and relationships among them.		\checkmark										
Model/ represent domain constraints on the objects and (or) on their relationships.		\checkmark										
Develop design solutions for problems on various O-O concepts.			\checkmark									

Week	Lecture	Topics	Class Test
1	Lec 1	Object-oriented approach	
	Lec 2		
	Lec 3		
2	Lec 4	Basic (procedural) elements of language	
	Lec 5		
	Lec 6		
3	Lec 7	Eiffel program	Class Test 1
	Lec 8	Instruction set	
	Lec 9	Entities (variables) and routines;	
4	Lec 10	Concepts underlying the O-O approach	
	Lec 11	Modularity	
	Lec 12		
5	Lec 13	Inheritance	
	Lec 14	Dynamic binding	
	Lec 15	Management information-system domain	
6	Lec 16	Environment matters: system configuration,	Class Test 2
	Lec 17		
	Lec 18		
7	Lec 19	Interfacing with external software	
	Lec 20	Garbage collection.	
	Lec 21		
8	Lec 22	Advanced issues involving exception	
	Lec 23	handling	
	Lec 24		
9	Lec 25	Repeated inheritance	
	Lec 26	Typing problems	
	Lec 27		Class Test 3
10	Lec 31	Parallelism	
	Lec 32	O-O software engineering process	
	Lec 33		
11	Lec 28	OOAD to a maintainable Addresses	
	Lec 29	verification	
	Lec 30		
12	Lec 34	OOAD to Address validation (V&V)	
	Lec 35	Issues of Eiffel software systems	Class Test 4

	Lec 36	
13	Lec 37	Building reusable libraries
	Lec 38	
	Lec 39	
14	Lec 40	The building of a parallel linear algebra
	Lec 41	library (Paladin).
	Lec 42	

- 1. Object-Oriented Software Engineering Stephen Schach
- 2. Object Oriented Software Engineering: A Use Case Driven Approach Ivar Jacobson
- 3. Object-Oriented Software Engineering: Practical Software Development using UML and Java Timothy Lethbridge, Robert Laganiere, Robert Laganiere

CSE-433

3 hours in a week, 3.00 Cr.

Artificial Neural Networks and Fuzzy Systems

Pre-requisite: None

Rationale:

Reasoning complex situations by the artificial agents with the help of neural network and fuzzy system provides better performance.

Objective:

- 1. To develop the skills on neural network theory and fuzzy logic theory and explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers.
- 2. To design and implement basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Develop the skills to gain a basic understanding of neural network theory and fuzzy logic theory.
- 2. Explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers.
- 3. Select and implement a basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application.

Course Content:

Biological nervous system: the brain and neurons, Introduction to artificial neural network and fuzzy systems, Theory and application of Artificial neural networks and fuzzy logic; Multi-layer

perception: Back propagation algorithm, Self organization map, Radial basis network, Hop field network, Recurrent network, Fuzzy set theory, Failing Adaptive Linear (ADALINE) and Multiple Adaptive Linear (MADALINE) networks, Generating internal representation, Cascade correlation and counter propagation networks, Higher order and bi-directional associated memory, Lyapunov energy function, attraction basin, Probabilistic updates: simulated annealing, Boltzmann machine, Adaptive Resonance Theory (ART) network. ARTI. ART2. Fuzzy ART mapping (ARTMAF) networks. Kohonen feature .l\ Learning Vector Quantization (LVQ) networks, Logic control: Adaptive fuzzy neural network; Genetic algorithm and evolution compacting, Applications to control; Pattern recognition; Nonlinear system modeling, Speech and image processing.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course		2	3	4	5	6	7	8	9	10	11	12
Develop the skills to gain a basic understanding of neural network theory and fuzzy logic theory	\checkmark											
Explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers.		\checkmark										
Select and implement a basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application.			\checkmark									

Week	Lecture	Topics	Class Test
1	Lec 1	Biological nervous system	
	Lec 2	Brain and neurons	
	Lec 3		
2	Lec 4	Introduction to artificial neural network and	
	Lec 5	fuzzy systems	Class Test 1
	Lec 6		Class Test I
3	Lec 7	Adaption of Artificial neural networks	
	Lec 8	Fuzzy logic	
	Lec 9		
4	Lec 10	Multi-layer perception	
	Lec 11	Back propagation algorithm	
	Lec 12	Self-organization map	
5	Lec 13	Radial basis network	
	Lec 14	Hop field network	Class Test 2
	Lec 15	Recurrent network	Class Test 2
6	Lec 16	Fuzzy set theory	
	Lec 17	Failing Adaptive Linear (ADALINE)	
	Lec 18	Multiple Adaptive Linear (MADALINE)	
7	Lec 19	Generating internal representation	

	Lec 20	Cascade correlation	
	Lec 21	Counter propagation networks	
8	Lec 22	Higher order	
	Lec 23	bi-directional associated memory	
	Lec 24	Lyapunov energy function	
9	Lec 25	Attraction basin	
	Lec 26	Probabilistic updates: simulated annealing	
	Lec 27	Boltzmann machine	Class Test 3
10	Lec 31	Adaptive Resonance Theory (ART) network.	
	Lec 32	ARTI. ART2.	
	Lec 33		
11	Lec 28	Fuzzy ART mapping (ARTMAF)	
	Lec 29	Kohonen feature	
	Lec 30	LVQ networks	
12	Lec 34	Logic control	
	Lec 35	Adaptive fuzzy neural network	
	Lec 36		
13	Lec 37	Genetic algorithm	
	Lec 38	Evolution compacting	Class Test 4
	Lec 39	Applications to control	
14	Lec 40	Pattern recognition	
	Lec 41	Nonlinear system modeling	
	Lec 42	Speech and image processing.	

- 1. Neural Networks and Fuzzy Systems Shigeo Abe
- 2. Introduction to Artificial Neural Systems Jacek M. Zurada
- 3. Artificial neural systems: foundations, paradigms, applications, and implementations Patrick K. Simpson

CSE-435

3 hours in a week, 3.00 Cr.

Distributed Algorithms

Pre-requisite: None

Rationale:

Execution of algorithms in parallel and distributed settings along with correctness, reliability, security, and performance is very vital for computing.

Objective:

- 1. To acquire concepts of models, limitations, and fundamentals of message passing and shared memory concurrency, and apply this understanding to example systems and algorithms.
- 2. Adapt, design algorithms and distinguish for execution in parallel and distributed settings along with correctness, reliability, security, and performance.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss and account for models, limitations, and fundamental concepts in the area of message passing and shared memory concurrency, and apply this understanding to example systems and algorithms.
- 2. Adapt, and design algorithms for execution in parallel and distributed settings.
- 3. Distinguish the algorithms for correctness, reliability, security, and performance.

Course Content:

Models of distributed computing, Synchrony, communication and failure concerns, Synchronous message-passing distributed systems, Algorithms in systems with no failures - Leader Election and Breadth-First Search algorithms, The atomic commit problem, Consensus problems - the Byzantine Generals Problem, Asynchronous message-passing distributed systems, Failure detectors, Logical time and vector clocks, Routing algorithms.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Discuss and account for models, limitations, and fundamental concepts in the area of message passing and shared memory concurrency, and apply this understanding to example systems and algorithms.												
Adapt, and design algorithms for execution in parallel and distributed settings.			\checkmark									
Distinguish the algorithms for correctness, reliability, security, and performance.		\checkmark										

Week	Lecture	Topics	Class Test
1	Lec 1	Models of distributed computing	
	Lec 2		
	Lec 3		
	Lec 4	Synchrony communication	
	Lec 5		
	Lec 6		
3	Lec 7	Failure concerns	Class Test 1
	Lec 8		
	Lec 9		
4	Lec 10	Synchronous message-passing	
	Lec 11		Class Test 2
	Lec 12		Class Test 2
5	Lec 13	Distributed systems	

	Lec 14		
	Lec 15		
6	Lec 16	Algorithms in systems with no failures - Leader	
	Lec 17	Election	
	Lec 18		
7	Lec 19		
	Lec 20	Breadth-First Search algorithms	
	Lec 21		
8	Lec 22	The atomic commit problem	
	Lec 23		
	Lec 24		
9	Lec 25	Consensus problems - the Byzantine	
	Lec 26	Generals Problem	
	Lec 27		Class Test 3
10	Lec 31	Asynchronous message-passing of distributed	
	Lec 32	systems	
	Lec 33		
11	Lec 28	Failure detectors I	
	Lec 29		
	Lec 30		
12	Lec 34	Failure detectors II	
	Lec 35		
	Lec 36		
13	Lec 37	Logical time	
	Lec 38	Vector clocks	Class Test 4
	Lec 39		
14	Lec 40	Routing algorithms	
	Lec 41		
	Lec 42		

- 1. Distributed Systems S. Mullender (ed.), Addison-Wesley
- 2. Introduction to Distributed Algorithms G. Tel. Cambridge Univ. Press

CSE-437

3 hours in a week, 3.00 Cr.

Bioinformatics

Pre-requisite: None

Rationale:

This course motivates to generate all sorts of data that involves generating protein sequence and predicting protein domains to even producing 3D structures of proteins from computer based databases of biological information for bioinformatics experiments.

Objective:

1. To be able to work with the vast amount of biomedical and genomic data using

bioinformatics tools.

2. To analyze the properties of different genome sequences and their alignment from databases using dynamic programming.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Explain and learn the knowledge of basic topics regarding bioinformatics.
- 2. Define and describe the contents and properties of the most important bioinformatics databases and searches.
- 3. Enhance the major steps in pairwise and multiple sequence alignment, explain the principle for, and execute pairwise sequence alignment by dynamic programming.

Course Content :

Molecular biology basics: DNA, RNA, genes, and proteins; Genome Rearrangements. Sequence similarity, homology, and alignment. Pair-wise alignment: scoring model, dynamic programming algorithms, heuristic alignment, and pair-wise alignment using Hidden Markov Models. Combinatorial pattern matching: Database Search, Rapid String Matching, BLAST, FASTA; Multiple alignment: scoring model, local alignment gapped and un-gapped global alignment. Motif finding: motif models, finding occurrence of known sites, discovering new sites. Gene Finding: predicting reading frames, maximal dependence decomposition. Analysis of DNA microarray data using hierarchical clustering, model-based clustering, expectation-maximization clustering, Bayesian model selection.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Explain and learn the knowledge of basic topics regarding bioinformatics.	\checkmark											
2. Define and describe the contents and												
properties of the most important												
bioinformatics databases and searches.	\checkmark											
3. Enhance the major steps in pairwise and												
multiple sequence alignment, explain the												
principle for, and execute pairwise sequence												
alignment by dynamic programming.		\checkmark										

Mapping of Course Outcomes (CO) and Program Outcomes:

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Bioinformatics	
	Lec 2	Applications of Bioinformatics	
	Lec 3	Molecular Biology Basics	
2	Lec 4	DNA and RNA	
	Lec 5	Genes	Class Test 1

	Lec 6	Proteins	
3	Lec 7	Genome Rearrangements	
	Lec 8	Sequence Similarity	
	Lec 9	Homology	
4	Lec 10	Alignment	
	Lec 11	Pair-wise Alignment Scoring Model	
	Lec 12	Pair-wise Alignment Scoring Model (Contd.)	
5	Lec 13	Dynamic Programming Algorithms	
	Lec 14	Dynamic Programming Algorithms (Contd.)	
		Heuristic Alignment	
	Lec 15		Class Test 2
6	Lec 16	Hidden Markov Model	
	Lec 17	Pair-wise Alignment using HMM	
	Lec 18	Pair-wise Alignment using HMM (Contd.)	
7	Lec 19	Combinatorial Pattern Matching	
	Lec 20	Database Search	
	Lec 21	Rapid String Matching	
8	Lec 22	BLAST	
	Lec 23	FASTA	
	Lec 24	Multiple Alignment Scoring Model	
9	Lec 25	Local Alignment	
	Lec 26	Gapped Global Alignment	
	Lec 27	Un-gapped Global Alignment	Class Test 3
10	Lec 31	Motif Finding: Motif Models	
	Lec 32	Finding Occurence of Known Sites	
	Lec 33	Discovering New Sites	
11	Lec 28	Gene Finding	
	Lec 29	Predicting Reading Frames	
	Lec 30	Maximal Dependence Decomposition	
12	Lec 34	Analysis of DNA Microarray Data	
	Lec 35	Hierarchical Clustering	
	Lec 36	Hierarchical Clustering (Contd.)	
13	Lec 37	Model Based Clustering	
	Lec 38	Model Based Clustering (Contd.)	Class Test 4
	Lec 39 Expectation Maximization Clustering		
14	Lec 40	Expectation Maximization Clustering	
		(Contd.)	
	Lec 41	Bayesian Model Selection	
	Lec 42	Bayesian Model Selection (Contd.)	

1. 1. An Introduction to Bioinformatics Algorithm (1st Edition)- Neil C. Jones, Pavel A. Pevzner; The MIT Press (2004)

CSE-439

Robotics

Pre-requisite: None

Rationale:

This course introduces the fundamentals of robotics design and development, the principles of robot kinematics, dynamics, motion planning, trajectory generation and control as well as plan and research complete robots for various industrial applications.

Objective:

- 1. To explain the basics of robotic systems, robot design, development process and their vast applications.
- 2. To specify and analyze the simulation, modeling and drawbacks of a robotic system for an interactive complex environment.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Explain with the concept development and key components of robotics technologies.
- 2. Solve problems in spatial coordinate representation and spatial transformation, robot locomotion design, kinematics, motion control, localization and mapping, navigation and path planning.
- 3. Design and implement a robotic project on a physical mobile robot platform, with tasks involving project specification, algorithm design, software programming, simulation and modeling, control and obstacle avoidance in a complex and interactive environment.

Course Content :

Introduction to robotics, overview of robot mechanisms, dynamics, and intelligent controls, planar and spatial kinematics, and motion planning; mechanism design for manipulators and mobile robots, multi-rigid body dynamics, 3D graphic simulation; control design, actuators, and sensors; wireless networking, task modeling, human-machine interface, and embedded software mechanical design, rigidbody velocity, Jacobean, inverse kinematics, redundant and parallel robots, trajectory control, face control and haptics, Micro and Nano-robotics, mobile robots. Human-robot interaction, Multiagents, fault diagnosis.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course		2	3	4	5	6	7	8	9	10	11	12
Explain with the concept development and key components of robotics technologies.	\checkmark											
Solve problems in spatial coordinate representation and spatial transformation, robot locomotion design, kinematics, motion control, localization and mapping, navigation and path planning.		\checkmark										
Design and implement a robotic project on a physical mobile robot platform, with tasks involving project specification, algorithm design, software programming, simulation and modeling, control and obstacle avoidance in a complex and interactive environment.			V									

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Robotics	
	Lec 2	Applications of Robotics	
	Lec 3	Evolution of Robotics	
2	Lec 4	Overview of Robot Mechanisms	
	Lec 5	Overview of Robot Dynamics	
	Lec 6	Overview of Robot Intelligent Controls	
3	Lec 7	Spatial Descriptions	Class Test 1
	Lec 8	Transformations	
	Lec 9	Introduction to Kinematics	
4	Lec 10	Planar Kinematics	
	Lec 11	Spatial Kinematics	
	Lec 12	Motion Planning	
5	Lec 13	Mechanism Design for Manipulators	
	Lec 14	Mechanism Design for Mobile Robots	
	Lec 15	Mechanism Design for Mobile Robots	
		(Contd.)	Class Test 2
6	Lec 16	Manipulator Kinematics	
	Lec 17	Inverse Manipulator Kinematics	
	Lec 18	Introduction to Dynamics	
7	Lec 19	Manipulator Dynamics	
	Lec 20	Trajectory Generation	
	Lec 21	Multi-rigid body Dynamics	
8	Lec 22	Linear Control of manipulators	
	Lec 23	Non-Linear Control Manipulators	
	Lec 24	Force Control of Manipulators	
9	Lec 25	3D Graphic Simulation	
	Lec 26	3D Graphic Simulation (Contd.)	Class Test 3
	Lec 27	3D Graphic Simulation (Contd.)	

10	Lec 31	Control Design	
	Lec 32	Actuators	
	Lec 33	Sensors	
11	Lec 28	Task Modeling, Face Control and Haptics	
	Lec 29	Human-Machine Interface	
	Lec 30	Embedded Software Mechanical Design	
12	Lec 34	Jacobean Kinematics	
	Lec 35	Inverse Kinematics	
	Lec 36	Redundant and Parallel Robots	
13	Lec 37	Micro Robotics	
	Lec 38	Nano-Robotics	Class Test 4
	Lec 39	Mobile Robots	
14	Lec 40	Human-robot interaction	
	Lec 41	Multiagents	
	Lec 42	Fault Diagnosis	

- 1. Introduction to Robotics: Analysis, Control, Applications (2nd Edition) Saeed B. Niku; Wiley (2010)
- Introduction to Robotics: Mechanics and Control (3rd Edition) John J. Craig; Pearson (2004)

CSE-441

3 hours in a week, 3.00 Cr.

Machine Learning

Pre-requisite: NONE

Rationale:

Machine learning provides appropriate learning algorithm to best suit the current need and enhance the learning parameters for maximum performance.

Objective:

- 1. To learn paradigms in different environmental setting and apply the appropriate learning algorithm to best suit the current need.
- 2. To enhance the learning parameters to achieve maximum performance.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Discuss the different learning paradigms in different environmental setting
- 2. Select and apply the appropriate learning algorithm to best suit the current need.
- 3. Enhance the learning parameters to achieve maximum performance.

Course Content:

Introduction to Machine Learning; Regression analysis: Logistic Regression, Linear Regression; Supervised and Unsupervised learning; Bayesian Learning; Decision Tree Learning; Rule based learning; Instance based learning; Neural Nets; Support Vector Machine; Genetic Algorithms; Reinforcement learning; Ensemble learning; Hidden Markov Models; Maximum Likelihood Estimates, Parameter Estimation; Computational learning theory.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Discuss the different learning paradigms in different environmental setting.	\checkmark											
Select and apply the appropriate learning algorithm to best suit the current need.		\checkmark										
Enhance the learning parameters to achieve maximum performance.		\checkmark										

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Machine Learning	
	Lec 2		
	Lec 3		
2	Lec 4	Regression analysis	
	Lec 5	Logistic Regression	
	Lec 6		
3	Lec 7	Linear Regression	Class Test 1
	Lec 8		
	Lec 9		
4	Lec 10	Supervised learning	
	Lec 11	Unsupervised learning	
	Lec 12		
5	Lec 13	Bayesian Learning	
	Lec 14	Decision Tree Learning	
	Lec 15		Class Test 2
6	Lec 16	Rule based learning	Class Test 2
	Lec 17	Instance based learning	
	Lec 18		
7	Lec 19	Neural Nets	
	Lec 20		
	Lec 21		
8	Lec 22	Support Vector Machine	
	Lec 23	Genetic Algorithms	
	Lec 24	_	
9	Lec 25	Reinforcement learning	

	Lec 26		Class Test 3
	Lec 27		
10	Lec 31	Ensemble learning	
	Lec 32		
	Lec 33		
11	Lec 28	Hidden Markov Models	
	Lec 29		
	Lec 30		
12	Lec 34	Maximum Likelihood Estimates	
	Lec 35		
	Lec 36		
13	Lec 37	Parameter Estimation	
	Lec 38		Class Test 4
	Lec 39		
14	Lec 40	Computational learning theory	
	Lec 41		
	Lec 42		

- 1. Pattern Recognition and Machine Learning Christopher M. Bishop; Springer
- 2. Machine Learning Tom Mitchell, McGraw Hill
- 3. Pattern Recognition Sergios Theodoridis and Konstantinos Koutroumbas; Elsevier Inc.

Reference Book(s):

- 1. Machine Learning, Tom Michael Mitchell
- 2. Introduction to Machine Learning, Ethem Alpaydin

Option-II

CSE-443

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Pattern Recognition

Rationale:

This course motivates to recognize patterns, regularities and also irregularities in data by using various pattern recognition algorithms and techniques to find useful information for science, business, organizational decisions as well as contributing to the field of machine learning, data mining and artificial intelligence.

Objective:

- 1. To provide a comprehensive introduction to pattern recognition techniques leading to the ability to understand contemporary terminology, progress, issues, and trends.
- 2. To specify sectors and context where the application of pattern recognition can provide a fruitful solution.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Identify areas where pattern recognition techniques can offer a solution.
- 2. Describe the strength and limitations of some techniques used in pattern recognition for classification, regression and density estimation problems.
- 3. Conduct, document and present a literature review on a topic related to Machine Learning and Pattern Recognition.
- 4. Solve problems in regression and classification.

Course Content :

Introduction to pattern recognition, Statistical and Neural Pattern Recognition, Bayesian decision theory, Linear classifiers, Nonlinear classifiers, Parametric estimation techniques; Non-parametric estimation techniques; Template matching, Dynamic programming methods, Correlation methods, Hidden Markov model, Support vector machine, Syntactic pattern recognition, Clustering algorithms, Principle component analysis.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Identify areas where pattern recognition		_/										
techniques can offer a solution.		V										
2. Describe the strength and limitations of												
some techniques used in pattern		_/										
r cognition for classification, regression		V										
and density estimation problems.												
3. Conduct, document and present a												
literature review on a topic related to			,									
Machine Learning and Pattern			V									
Recognition.												
4. Sol e problems in regression and			_/									
classification.			V									

Week	Lecture	Topics	Class Test
1	Lec 1 Lec 2 Lec 3	Introduction to Pattern Recognition Importance of Pattern Recognition tatistical and Neural Pattern Recognition	
2	Lec 4 Lec 5 Lec 6	Review of Probability Distributions Review of Probability Distributions (Contd.) Bayesian classifier	Class Test 1
3	Lec 0 Lec 7 Lec 8 Lec 9	Bayes Decision Theory Discriminate Functions Decision Surfaces	
4	Lec 10 Lec 11 Lec 12	Bayesian Classifier for Normal Distribution Naïve Bayes Classifier Bayesian Belief Networks	
5	Lec 13 Lec 14 Lec 15	Linear classifiers Discriminate Functions Decision Hyperplanes	Class Test 2
6	Lec 16 Lec 17 Lec 18	Perceptron Algorithm Least Squares Methods Kessler's Construction	
7	Lec 19 Lec 20 Lec 21	Nonlinear Classifier Two and Three Layer Perceptrons Back Propagation Algorithm	
8	Lec 22 Lec 23 Lec 24	Template matching Optimal Path Searching Techniques Optimal Path Searching Techniques (Contd.)	
9	Lec 25 Lec 26 Lec 27	Dynamic Programming Methods (Contd.) Dynamic Programming Methods (Contd.) Correlation Methods	Class Test 3
10	Lec 31 Lec 32 Lec 33	Context Dependent Classification Observable and Hidden Markov Models Viterbi Algorithm	
11	Lec 28 Lec 29 Lec 30	Problems of HMM Problems of HMM Application of HMM in Speech Recognition	
12	Lec 34 Lec 35 Lec 36	Syntactic Pattern Recognition Syntactic Pattern Recognition (Contd.) Syntactic Pattern Recognition (Contd.)	Class Test 4
13	Lec 37 Lec 38 Lec 39	Clustering Algorithms Clustering Algorithms (Contd.) Clustering Algorithms (Contd.)	

14	Lec 40	Support Vector Machine	
	Lec 41	Support Vector Machine (Contd.)	
	Lec 42	Support Vector Machine (Contd.)	

- 1. Pattern Classification (2nd Edition) R. O. Duda, P.E.D. Hart and G. Stork; John Wiley and Sons (2000)
- 2. Pattern recognition (4th Edition) –Sergios Theodoridis and Konstantinos Koutroumbas; Academic Press (2008)

CSE-444

3 hours in alternate week, 0.75 Cr.

Pattern Recognition Sessional

Pre-requisite: None

Rationale:

This course motivates to apply various algorithm and techniques - classification, regression, clustering, neural network, decision tree and other estimation techniques which helps to identify different types of pattern in data that can give required solution and suggestions to real-life problems for various applications.

Objective:

- 1. To achieve a basic idea about designing and developing pattern recognition applications using different algorithm and techniques.
- 2. To analyze regular/irregular pattern in data in order to find out potentially useful information.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Use practical knowledge to identify areas where pattern recognition techniques can offer a solution.
- 2. Conduct, document and present a literature review on a topic related to Machine Learning and Pattern Recognition practically.
- 3. Solve problems in regression and classification.

Course Content :

Bayes Classifier, Perceptron Algorithm, Pocket Algorithm, Edit Distance, Basic Sequential Algorithmic Scheme, K-Means Clustering algorithm, Support Vector Machine, Neural Network, Decision Tree.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, project, quiz, viva, lab test.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class performance	10

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Use practical knowledge to identify areas												
where pattern recognition techniques can						\checkmark						
offer a solution.												
2. Conduct, document and present a												
literature review on a topic related to								_/				
Machine Learning and Pattern Recognition								v				
practically.												
3. Solve problems in regression and									_/			
classification.									V			

Week	Lecture	Topics
1	Lec 1	Introduction to MATLAB
	Lec 2	Python Script
	Lec 3	Project Idea Distribution
2	Lec 4	Introduction to MATLAB (Contd.)
	Lec 5	Python Script
	Lec 6	Pro ect Idea Distribution
3	Lec 7	Project Proposal Presentation
	Lec 8	Project Proposal Presentation (Contd.)
	Lec 9	Project Proposal Presentation (Contd.)
4	Lec 10	Bayes Classifier
	Lec 11	Bayes Classifier (Contd.)
	Lec 12	Home Assignment
5	Lec 13	K-Nearest Neighbour Classification K-Nearest Neighbour
	Lec 14	Classification (Contd.)
	Lec 15	Home Assignment
6	Lec 16	Linear Classifiers
	Lec 17	Linear Classifiers (Contd.)
	Lec 18	Home Assignment
7	Lec 19	Perceptron Algorithm
	Lec 20	Perceptron Algorithm (Contd.)
	Lec 21	Home Assignment
8	Lec 22	Lab Test 1
Ŭ	Lec 22 Lec 23	Lab Test 1 (Contd.)
	Lec 24	Lab Test 1 (Contd.)

9	Lec 25	Clustering Algorithms			
	Lec 26	Clustering Algorithms (Contd.)			
	Lec 27	Home Assignment			
10	Lec 31	Project Update			
	Lec 32	Project Update (Contd.)			
	Lec 33	Project Update (Contd.)			
11	Lec 28	Support Vector Machine			
	Lec 29	Support Vector Machine (Contd.)			
	Lec 30	Neural Network			
12	Lec 34	Neural Network (Contd.)			
	Lec 35	Decision Tree			
	Lec 36	Decision Tree (Contd.)			
13	Lec 37	Quiz			
	Lec 38	Quiz (Contd.)			
	Lec 39	Viva			
14	Lec 40	Project Final Submission			
	Lec 41	Project Final Submission (Contd.)			
	Lec 42	Project Final Submission (Contd.)			

- 1. A Guide to MATLAB for Beginners and Experienced Users (2nd Edition) Brian R. Hunt Ronald L. Lipsman Jonathan M. Rosenberg with Kevin R. Coombes, John E. Osborn, and Garrett J. Stuck; Cambridge University Press (2006)
- 2. Sergios Theodoridis Introduction to Pattern Recognition: A Matlab Approach (1st Edition)
 Sergios Theodoridis, Aggelos Pikrakis, Konstantinos Koutroumbas and Dionisis Covourous; Academic Press (2010)

CSE-445

3 hours in a week, 3.00 Cr.

Digital Signal Processing

Pre-requisite: None

Rationale:

This course discusses the concepts of discrete signal processing and their applications in communications, control and instrumentation.

Objective:

- 1. To understand the key theoretical principles underpinning DSP in a design procedure through design examples and case studies.
- 2. To learn how to use a powerful general-purpose mathematical package such as MATLAB to design and simulate Digital Signal Processing systems.
- 3. To determine the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation.
- 4. To design a real-time signal processing algorithms using the latest fixed-point processor.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Explain the key theoretical principles underpinning DSP in a design procedure through this design examples and case study
- 2. Determine the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation.
- 3. Design signal processing algorithms

Course Content :

Introduction to speech, image & data processing; Discrete time signals, sequences; Linear Constant Coefficient difference equation; Sampling continuous time signals; Two dimensional sequences and systems; Z-transform, Inverse Z-transform, H-transform; Frequency domain representation, discrete time systems and signals; Fourier series and Fourier Transform; Parseval's theorem; Equivalent noise definition of bandwidth; Convolution, Correlation and method of numerical integration; Computation of the DFT: Goertzel FFT, Chirp Z-transform algorithms. Two-dimensional filter design, Quantization effects in digital filters.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Outcomes(CO) of the		Program Outcome (PO)										
Course Outcomes(CO) of the	1	2	3	4	5	6	7	8	9	10	11	12
Explain the key theoretical principles underpinning DSP in a design procedure through this design examples and case study												
Determine the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation.		\checkmark										
Design signal processing algorithms					\checkmark							

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to speech image & data	
	Lec 2	processing	
	Lec 3		
2	Lec 4	Discrete time signals	
	Lec 5	Sequences	Class Test 1
	Lec 6		Class Test I
3	Lec 7	Linear Constant Coefficient difference	
	Lec 8	equation	
	Lec 9		
4	Lec 10	Sampling continuous time signals	

	Lec 11		
	Lec 12		
5	Lec 13	Two dimensional sequences and systems	
_	Lec 14		
	Lec 15		
6	Lec 16	Z-transform	
	Lec 17	Inverse Z-transform	
	Lec 18	H-transform	Class Test 2
7	Lec 19	Frequency domain representation	
	Lec 20	Discrete time systems and signals	
	Lec 21		
8	Lec 22	Fourier series and Fourier Transform	
	Lec 23		
	Lec 24		
9	Lec 25	Parseval's Theorem	
	Lec 26		
	Lec 27		Class Test 3
10	Lec 31	Equivalent Bandwidth Noise	
	Lec 32	Convolution	
	Lec 33		
11	Lec 28	Correlation	
	Lec 29	Numerical integration	
	Lec 30		
12	Lec 34	Computation of the DFT	
	Lec 35		
	Lec 36		
13	Lec 37	Goertzel FFT	
	Lec 38	Chirp Z-transform algorithms.	Class Test 4
	Lec 39		_
14	Lec 40	Two-dimensional filter design	
	Lec 41	Quantization effects in digital filters.	
	Lec 42		

- 1. Digital Signal Processing John G. Proakis & Dimitris Manolakis
- 2. Discrete-Time Signal processing Allan Oppenheim & Ronald Schafer
- 3. Digital Signal Processing-A practical approach Emmanuel C. Ifeachor Barrie W. Jervis
- 4. Signals and Systems Rodger Ziemer & William Tranter

CSE-446

3 hours in alternate week, 0.75 Cr.

Digital Signal Processing Sessional

Pre-requisite: None

Rationale:

This course helps to better understanding of dealing with signals and processing signals for getting desired output, removing noise associate with signals.

Objective:

- 1. To design, simulate and implement digital signal processing systems in MATLAB
- 2. To design and implement a real-time signal processing algorithms using the latest fixed-point processor.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Learn how to use a powerful general-purpose mathematical package such as MATLAB to design and simulate Digital Signal Processing systems.
- 2. Determine the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation.
- 3. Design a real-time signal processing algorithms using the latest fixed-point processor.

Course Content:

Speech, image & data processing algorithms; Sampling continuous time signals; Z-transform, Inverse Z-transform, Frequency domain representation, Fourier series and Fourier Transform; Equivalent noise definition of bandwidth; Convolution, Correlation and method of numerical integration; Computation of the DFT: Goertzel FFT, Chirp Z-transform algorithms. Two-dimensional filter design.

Teaching-learning and Assessment Strategy:

Lectures, class performances, lab test, quiz, viva.

Assessment Methods & their Weights:

Assessment Method	(100%)
Lab Test	40
Quiz	20
Viva	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Learn how to use a powerful general-purpose mathematical package such as MATLAB to design and simulate Digital Signal Processing systems.									\checkmark			
Determine the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation.							٧					
Design a real-time signal processing algorithms using the latest fixed-point processor.									٧			

Week	Lecture	Topics	Remarks
1	Lec 1	Orientation	
	Lec 2	Implementing signal processing algorithm	
	Lec 3		
2	Lec 4	Sampling continuous time signals	Assignment on
	Lec 5		Assignment on sampling
	Lec 6		sampning
3	Lec 7	Implementing Z-transform, Inverse Z-	
	Lec 8	transform	
	Lec 9		
4	Lec 10	Problem solving on noise removal using	
	Lec 11	bandwidth	
	Lec 12		
5	Lec 13	Fourier Transformation of signals	

	Lec 14	Assignment: Chirp Z-transform algorithms
	Lec 15	
6	Lec 16	Lab Test
	Lec 17	
	Lec 18	
7	Lec 19	Quiz
	Lec 20	Viva
	Lec 21	

CSE-447 Telecommunication Engineering

3 hours in a week, 3.00 Cr.

Pre-requisite: None

Rationale:

This course motivates to design and install equipment used for transmitting wired phone, cellular, cable and broadband data as well as working with copper or fiber optic cabling, complex networks and switching systems in order to enable companies to communicate effectively with customers and deliver high standards of customer service.

Objective:

1. To perceive knowledge regarding different components and techniques of telecommunication system.

2. To specify problems and design various telecommunication system and networks for solving the respective problems.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate theoretical and technical knowledge of telecommunications systems associated with LANs, MANs, and WANs.
- 2. Learn to design, implement, and manage telecommunications systems using voice and data
- 3. Model and simulate telecommunications systems and networks in order to identify and solve these problems.
- 4. Acquire the knowledge and expertise in the field of telecommunication hardware.

Course Content :

Introduction: overview of telecommunication; history, evolution, convergence of telecommunication and data networks; National and International regulatory bodies; Basic elements of Telecommunication: Telephone apparatus, microphone, speaker, ringer, pulse and tone dialing mechanism; local and central batteries and advanced systems of power supplies; Transmission media: Characteristics and applications of twisted pairs, coaxial cables and optical fibers, Terrestrial and satellite microwave, radio waves, VSAT; Telephone operating principles:

telephone equipment, description of the modern phone; Telephone switching systems: PSTN, PBX, standards; Basics of communication systems: modulation, multiplexing; Switching system: circuit switching, packet switching; Traffic analysis: Traffic characterization, grades of service, network blocking probabilities, delay system and queuing; Integrated services digital network (ISDN), Digital subscriber loop (DSL), Data communication equipment: Tele-Traffic analysis; Cellular telephony: Frequency reuse, frequency management, channel alignment, handoff strategies, FDMA, TDMA, CDMA and GSM, Introduction to satellite communication, Optical fiber communication, Submarine cables, Digital Radio Microwave, etc.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

]	Prog	ran	n Ou	itco	me ((PO)		
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1.Demonstrate theoretical and technical knowledge of telecommunications systems associated with LANs, MANs, and WANs.	\checkmark											
2. Learn to design, implement, and manage telecommunications systems using voice and data.			\checkmark									
3. Model and simulate telecommunications systems and networks in order to identify and solve these problems.				\checkmark								
4. Acquire the knowledge and expertise in the field of telecommunication hardware.	\checkmark											

Mapping of Course Outcomes (CO) and Program Outcomes:

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction: Overview of	
		Telecommunication	
	Lec 2	History of Telecommunication	
	Lec 3	Evolution of Telecommunication	
2	Lec 4	Convergence of Telecommunication	
	Lec 5	Data Networks	
	Lec 6	Introduction: Regulatory Bodies	Class Test 1
3	Lec 7	National Regulatory Bodies	Class Test I
	Lec 8	International Regulatory Bodies	
	Lec 9	International Regulatory Bodies (Contd.)	
4	Lec 10	Basic Elements of Telecommunication,	Class Tast 2
		Telephone Apparatus	Class Test 2

	Lec 11	Microphone, Speaker and Ringer	
	Lec 12	Pulse and Tone Dialing Mechanism, Local	
		and Central Batteries	
5	Lec 13	Advanced Systems of Power Supplies	-
_	Lec 14	Transmission Media	
	Lec 15	Characteristics and Applications: Twisted	
		Pairs	
6	Lec 16	Characteristics and Applications: Coaxial	
		Cable	
	Lec 17	Characteristics and Applications: Optical	
		Fibers	
	Lec 18	Terrestrial Microwave	
7	Lec 19	Satellite Microwave	7
	Lec 20	VSAT	
	Lec 21	Radio Waves	
8	Lec 22	Telephone Operating Principles	
	Lec 23	Telephone Equipment	
	Lec 24	Description of a Modern Phone	
9	Lec 25	PSTN, PBX Standards	
	Lec 26	Modulation	
	Lec 27	Multiplexing	Class Test 3
10	Lec 31	Switching System	
	Lec 32	Circuit Switching	
	Lec 33	Packet Switching	
11	Lec 28	Traffic Characterization	
	Lec 29	Traffic Analysis	
	Lec 30	Grades of Service	
12	Lec 34	ISDN	
	Lec 35	DSL	
	Lec 36	Cellular Telephony	
13	Lec 37	FDMA, CDMA	
	Lec 38	TDMA, GSM Class Te	
	Lec 39	Introduction to Satellite Communication	
14	Lec 40	Optical Fibre Communication	
	Lec 41	Submarine Cables	
	Lec 42	Digital radio Microwave	

- 1. Introduction to Telecommunication: Voice, Data and the Internet (1st Edition) Marion Cole; Prentice Hall (2010)
- 2. Essential Guide to Telecommunications (5th Edition) Annabel Z. Dodd; Prentice Hall (2012)
- 3. Optical Fiber Communication: Principles and Practice (3rd Edition) John M Senior; Pearson (2010)
- 4. Modern Digital and Analog Communication System (4th Edition) B P Lathi; Oxford (2011)

CSE-448 Telecommunication Engineering Sessional

Pre-requisite: None

Rationale:

This course aims provide hands on practice to design and install equipment used for transmitting wired phone, cellular, cable and broadband data as well as working with copper or fiber optic cabling, complex networks and switching systems in order to enable companies to communicate effectively with customers and deliver high standards of customer service.

Objective:

1. To perceive knowledge regarding different components and techniques of telecommunication system.

2. To specify problems and design various telecommunication system and networks for solving the respective problems.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate theoretical and technical knowledge of telecommunications systems associated with LANs, MANs, and WANs.
- 2. Learn to design, implement, and manage telecommunications systems using voice and data
- 3. Model and simulate telecommunications systems and networks in order to identify and solve these problems.
- 4. Acquire the knowledge and expertise in the field of telecommunication hardware.

Course Content :

Introduction: overview of telecommunication; history, evolution, convergence of telecommunication and data networks; National and International regulatory bodies; Basic elements of Telecommunication: Telephone apparatus, microphone, speaker, ringer, pulse and tone dialing mechanism; local and central batteries and advanced systems of power supplies; Transmission media: Characteristics and applications of twisted pairs, coaxial cables and optical fibers, Terrestrial and satellite microwave, radio waves, VSAT; Telephone operating principles: telephone equipment, description of the modern phone; Telephone switching systems: PSTN, PBX, standards; Basics of communication systems: modulation, multiplexing; Switching system: circuit switching, packet switching; Traffic analysis: Traffic characterization, grades of service, network blocking probabilities, delay system and queuing; Integrated services digital network (ISDN), Digital subscriber loop (DSL), Data communication equipment: Tele-Traffic analysis; Cellular telephony: Frequency reuse, frequency management, channel alignment, handoff strategies, FDMA, TDMA, CDMA and GSM, Introduction to satellite communication, Optical fiber communication, Submarine cables, Digital Radio Microwave, etc.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Assessment Methods & their Weights:

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

		Program Outcome (PO)										
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1.Demonstrate theoretical and technical												
knowledge of telecommunications systems associated with LANs, MANs, and WANs.										\checkmark		
2. Learn to design, implement, and manage												
telecommunications systems using voice and												
data.											\checkmark	
3. Model and simulate telecommunications												
systems and networks in order to identify and solve these problems.												\checkmark
4. Acquire the knowledge and expertise in the field of telecommunication hardware.												\checkmark

Week	Lecture	Topics
1	Lec 1	Introduction: Overview of Telecommunication
		History of Telecommunication
	Lec 2	Evolution of Telecommunication
	Lec 3	
2	Lec 4	Convergence of Telecommunication
	Lec 5	Data Networks
	Lec 6	Introduction: Regulatory Bodies
3	Lec 7	National Regulatory Bodies
	Lec 8	International Regulatory Bodies
	Lec 9	International Regulatory Bodies (Contd.)
4	Lec 10	Basic Elements of Telecommunication, Telephone Apparatus

		Microphone, Speaker and Ringer
	Lec 11	Pulse and Tone Dialing Mechanism, Local and Central Batteries
	Lec 12	
5	Lec 13	Advanced Systems of Power Supplies
	Lec 14	Transmission Media
	Lec 15	Characteristics and Applications: Twisted Pairs
6	Lec 16	Characteristics and Applications: Coaxial Cable
		Characteristics and Applications: Optical Fibers
	Lec 17	Terrestrial Microwave
	Lec 18	
7	Lec 19	Satellite Microwave
	Lec 20	VSAT
	Lec 21	Radio Waves
8	Lec 22	Telephone Operating Principles
	Lec 23	Telephone Equipment
	Lec 24	Description of a Modern Phone
9	Lec 25	PSTN, PBX Standards
	Lec 26	Modulation
	Lec 27	Multiplexing
10	Lec 31	Switching System
	Lec 32	Circuit Switching
	Lec 33	Packet Switching
11	Lec 28	Traffic Characterization
	Lec 29	Traffic Analysis
	Lec 30	Grades of Service
12	Lec 34	ISDN
	Lec 35	DSL
	Lec 36	Cellular Telephony
13	Lec 37	FDMA, CDMA
	Lec 38	TDMA, GSM
	Lec 39	Introduction to Satellite Communication
14	Lec 40	Optical Fibre Communication
	Lec 41	Submarine Cables
	Lec 42	Digital radio Microwave

- 1. Introduction to Telecommunication: Voice, Data and the Internet (1st Edition) Marion Cole; Prentice Hall (2010)
- 2. Essential Guide to Telecommunications (5th Edition) Annabel Z. Dodd; Prentice Hall (2012)
- Optical Fiber Communication: Principles and Practice (3rd Edition) John M Senior; Pearson (2010)
- 4. Modern Digital and Analog Communication System (4th Edition) B P Lathi; Oxford (2011)

CSE-449

Mobile and Ubiquitous Computing

Pre-requisite: None

Rationale:

This course motivates to enable computing technologies in such a way where computing is allowed to appear anytime and everywhere by studying affordances, limitations, necessary protocols, user interfaces, framework design etc. of such computing systems in order to implement them for different applications.

Objective:

- 1. To identify different features that helps to develop a mobile, personalized and context independent computing system.
- 2. To analyze the different properties and requirements that influences the development of a mobile and ubiquitous computing system.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Describe mobile wireless communication technologies and explain their functioning.
- 2. Explain the fundamental trade-offs related to resource limitations and communication needs in mobile communication and sensing systems.
- 3. Demonstrate an understanding of the range of novel applications based upon mobile systems as well as their particular requirements

Course Content :

Introduction - Evolution of mobile computing systems, Affordances of mobile systems (ubiquitous connectivity, personalization, context awareness), Constraints of the mobile platform (wireless quality, battery limitations, UI limitations, sensing accuracy).Network and Transport Protocol for Wireless Networks, Mobile IP and Variants of TCP; Distributed Systems platforms for Mobile Computing, Proxy Based Architectures, Service Discovery, Interaction Platforms; File System support for Mobile Computing; Development in Context-aware and Ubiquitous computing; Smart Embedded devices, Information Appliance and Wearable computers; Sensing and Context Acquisition in Ubiquitous Computing; Proximity-based Networking, Communication protocol for Wireless Sensor Networks; Human Interaction in Ubiquitous Computing

Environments, Tangible User Interfaces, Privacy and Security. Technological Component of Location Based Service (LBS)-WAP, GPS, Cell Based Location, 3G wireless, VXML, SMS-MMS, Personal Area Networks (802.11, Bluetooth, IRFIDs), Micro-Electro- Mechanical (MEMES), Recommender systems (Collaborative Filtering, Intelligent Agents). Android Framework, and Application structure.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Describe mobile wireless communication technologies and explain their functioning.	\checkmark											
Explain the fundamental trade-offs related to resource limitations and communication needs in mobile communication and sensing systems.		\checkmark										
Demonstrate an understanding of the range of novel applications based upon mobile systems as well as their particular requirements.	\checkmark											

Mapping of Course Outcomes (CO) and Program Outcomes:

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction	
	Lec 2	Evolution of Mobile Computing Systems	
	Lec 3	Affordances of Mobile Systems	
2	Lec 4	Constraints of the Mobile Platform	
	Lec 5	Network Protocol for Wireless Networks	
	Lec 6	Transport Protocol for Wireless Networks	
3	Lec 7	Mobile IP	Class Test 1
	Lec 8	Variants of TCP	Class Test I
	Lec 9	Distributed Platforms for Mobile	
		Computing	
4	Lec 10	Proxy Based Architectures	Class Test 2
	Lec 11	Service Discovery	Class Test 2

	Lec 12	Interaction Platforms	
5	Lec 13	File System Support for Mobile Computing	
	Lec 14	Development of Context Aware	
	Lec 15	Computing	
		Development of Ubiquitous Computing	
6	Lec 16	Smart Embedded Device	
	Lec 17	Information Appliance	
	Lec 18	Wearable Computers	
7	Lec 19	Sensing Acquisition	
	Lec 20	Context Acquisition	
	Lec 21	Proximity Based Networking	
8	Lec 22	Proximity Based Networking (Contd.)	
	Lec 23	Communication Protocol for Wireless	
	Lec 24	Sensor Network	
		Human Interaction in Ubiquitous	
		Computing Environment	
9	Lec 25	Tangible User Interfaces	
	Lec 26	Privacy and Security	Class Test 3
	Lec 27 Privacy and Security (Contd.)		
10	Lec 31	Components of LBS-WAP	
	Lec 32	Components of GPS	
	Lec 33	Cell-based Location Service	
11	Lec 28	3G Wireless	
	Lec 29	VXML	
	Lec 30	SMS-MMS	
12	Lec 34	Personal Area Network	
	Lec 35	802.11 and Bluetooth	
	Lec 36	IRFIDs	
13	Lec 37	Micro-electro-mechanical (MEMES)	
	Lec 38	Android Framework	Class Test 4
	Lec 39	Android Application Structure	
14	Lec 40	Recommender System	
	Lec 41	Collaborative Filtering	
	Lec 42	Intelligent Agents	

- 1. Context-Aware Mobile and Ubiquitous Computing for Enhanced Usability: Adaptive Technologies and Applications (1st Edition) –Dragan Stojanovic; Information Science Reference (2009)
- 2. Fundamentals of Mobile and Pervasive Computing (1st Edition) Frank Adelstein,

Sandeep KS Gupta, Golden Richard III and Loren Schwiebert; McGraw-Hill (2004)

3. Handbook on Mobile and Ubiquitous Computing: Status and Perspective (1st Edition) - Laurence T.

Yang, EviS Yukur and Seng W. Loke; CRC Press (2013)

CSE-450

3 hours in alternate week, 0.75 Cr.

Mobile and Ubiquitous Computing Sessional

Pre-requisite: None

Rationale:

This course motivates to use mobile communication and sensing systems based on devices which are equipped with sensors that enable the inference of the surrounding context, including the position, activity, and the environment of the user and emphasize on developing deeper understanding of the functioning of mobile wireless networks, mobile sensing, pervasive computing and applications of mobile systems.

Objective:

- 1. To demonstrate understanding of the technical, commercial and social issues relating to ubiquitous communications and the basics of wireless communications.
- 2. To develop simple wireless web applications.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Demonstrate practical skills in developing mobile sensing applications.
- 2. Design and create mobile application in team base with presentation.
- 3. Explain the range of novel applications based upon mobile systems as well as their particular requirements.

Course Content :

Evolution of mobile computing systems, Affordances of mobile systems, Network and TransportProtocol for Wireless Networks, Mobile IP and Variants of TCP, Proximity based Networking,CommunicationprotocolforWirelessSensorNetworks.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, viva, quiz, project.

Assessment Method	(100%)
Project	40
Quiz	20
Viva/Presentation	10
Class Participation	10
Report	10
Class Assessment	10

Assessment Methods & their Weights:

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Demonstrate practical skills in developing mobile sensing applications.						\checkmark						
2. Design and create mobile application in team base with presentation.									\checkmark			
3. Explain the range of novel applications based upon mobile systems as well as their particular requirements.							\checkmark					

Week	Lecture	Topics
1	Lec 1	Introduction to Mobile and Ubiquitous Computing
	Lec 2	Affordances of Mobile Systems
	Lec 3	Constraints of Mobile Platform
2	Lec 4	Wireless Fundamentals
	Lec 5	Introduction to Mobile OS - iOS, Android
	Lec 6	Android Programming
3	Lec 7	Discussion of Project Proposal
	Lec 8	Discussion of Project Proposal (Contd.)
	Lec 9	Discussion of Project Proposal (Contd.)
4	Lec 10	Android Programming -
	Lec 11	Android Framework
	Lec 12	Android Application Structure

5Lec 13UI components and LayoutsLec 14Notification Manager and ListenersLec 15Home Assignment6Lec 16Presentation on the project proposalLec 17Presentation on the project proposalLec 18Submission of a report7Lec 19Local- Area Wireless Interfaces on SmartphonesLec 20Details of IEEE 802.11 and BluetoothLec 21Lab Assignment8Lec 22Mobile Sensing StrategiesLec 23Mobile Sensing Strategies (Contd.)Lec 24Home Assignment9Lec 25Show Project Update (Contd.)Lec 31Sensor SamplingLec 32Best Practices in SensingLec 33Sensing position, Activity, Environment.11Lec 28Communication Management in Android Java SocketsLec 30Lec 34Show Project Update (Contd.)	
Lec 15Home Assignment6Lec 16Presentation on the project proposalLec 17Presentation on the project proposalLec 18Submission of a report7Lec 19Local- Area Wireless Interfaces on SmartphonesLec 20Details of IEEE 802.11 and BluetoothLec 21Lab Assignment8Lec 22Mobile Sensing StrategiesLec 23Mobile Sensing Strategies (Contd.)Lec 24Home Assignment9Lec 25Show Project UpdateLec 27Show Project Update (Contd.)Lec 31Sensor SamplingLec 32Best Practices in SensingLec 33Sensing position, Activity, Environment.11Lec 28Communication Management in Android Java SocketsLec 30Lec 34Show Project Update	5
6Lec 16 Lec 17Presentation on the project proposal Presentation on the project proposal Lec 187Lec 19 Lec 19Local- Area Wireless Interfaces on Smartphones Details of IEEE 802.11 and Bluetooth Lec 21 Lec 218Lec 22 Lec 23 Mobile Sensing Strategies Lec 24 Lec 24 Lec 25Mobile Sensing Strategies (Contd.) Home Assignment9Lec 25 Lec 26 Show Project Update Lec 27 Show Project Update (Contd.) Lec 27 Show Project Update (Contd.)10Lec 31 Lec 32 Best Practices in Sensing Lec 33 Sensing position, Activity, Environment.11Lec 28 Lec 29 Lec 3012Lec 348Show Project Update Show Project Update Sensing Strategies (Contd.)	
Lec 17 Lec 18Presentation on the project proposal Submission of a report7Lec 19 Lec 20 Lec 20 Lec 21Local- Area Wireless Interfaces on Smartphones Details of IEEE 802.11 and Bluetooth Lec 21 Lab Assignment8Lec 22 Lec 23 Mobile Sensing Strategies Lec 24 Lec 24 Home Assignment9Lec 25 Lec 26 Show Project Update Lec 2710Lec 31 Sensor Sampling Lec 33 Sensing position, Activity, Environment.11Lec 28 Lec 29 Data transfer with Android Lec 3012Lec 34Show Project Update	
Lec 18Submission of a report7Lec 19Local- Area Wireless Interfaces on SmartphonesLec 20Details of IEEE 802.11 and BluetoothLec 21Lab Assignment8Lec 22Mobile Sensing StrategiesLec 23Mobile Sensing Strategies (Contd.)Lec 24Home Assignment9Lec 25Show Project Update10Lec 31Sensor SamplingLec 33Sensing position, Activity, Environment.11Lec 28Communication Management in Android Java SocketsLec 30Lec 34Show Project Update	6
7Lec 19Local- Area Wireless Interfaces on SmartphonesLec 20Details of IEEE 802.11 and BluetoothLec 21Lab Assignment8Lec 22Mobile Sensing StrategiesLec 23Mobile Sensing Strategies (Contd.)Lec 24Home Assignment9Lec 25Show Project UpdateLec 27Show Project Update (Contd.)Lec 28Best Practices in SensingLec 31Sensor SamplingLec 33Sensing position, Activity, Environment.11Lec 28Communication Management in Android Java SocketsLec 30Lec 34Show Project Update	
Lec 20 Lec 21Details of IEEE 802.11 and Bluetooth Lec 218Lec 22 Lec 23Mobile Sensing Strategies Strategies (Contd.) Lec 249Lec 25 Lec 25Show Project Update Update (Contd.) Lec 279Lec 31 Lec 31Sensor Sampling Sensor Sampling Lec 3310Lec 31 Lec 33Sensing position, Activity, Environment.11Lec 28 Lec 29 Data transfer with Android Lec 3012Lec 34Show Project Update	
Lec 21Lab Assignment8Lec 22Mobile Sensing StrategiesLec 23Mobile Sensing Strategies (Contd.)Lec 24Home Assignment9Lec 25Show Project UpdateLec 26Show Project Update (Contd.)Lec 27Show Project Update (Contd.)10Lec 31Sensor SamplingLec 32Best Practices in SensingLec 33Sensing position, Activity, Environment.11Lec 29Data transfer with AndroidLec 30Lec 34Show Project Update	7
8Lec 22Mobile Sensing StrategiesLec 23Mobile Sensing Strategies (Contd.)Lec 24Home Assignment9Lec 25Show Project UpdateLec 26Show Project Update (Contd.)Lec 27Show Project Update (Contd.)10Lec 31Sensor SamplingLec 32Best Practices in SensingLec 33Sensing position, Activity, Environment.11Lec 28Communication Management in Android Java SocketsLec 30Lec 34Show Project Update	
Lec 23Mobile Sensing Strategies (Contd.)Lec 24Home Assignment9Lec 25Show Project UpdateLec 26Show Project Update (Contd.)Lec 27Show Project Update (Contd.)10Lec 31Sensor SamplingLec 32Best Practices in SensingLec 33Sensing position, Activity, Environment.11Lec 28Communication Management in Android Java SocketsLec 30Lec 30Lec 34	
Lec 24Home Assignment9Lec 25Show Project UpdateLec 26Show Project Update (Contd.)Lec 27Show Project Update (Contd.)10Lec 31Sensor SamplingLec 32Best Practices in SensingLec 33Sensing position, Activity, Environment.11Lec 28Communication Management in Android Java SocketsLec 30Lec 34	8
9Lec 25Show Project UpdateLec 26Show Project Update (Contd.)Lec 27Show Project Update (Contd.)10Lec 31Lec 32Best Practices in SensingLec 33Sensing position, Activity, Environment.11Lec 28Lec 29Data transfer with AndroidLec 30Lec 34	
Lec 26Show Project Update (Contd.)Lec 27Show Project Update (Contd.)10Lec 31Lec 32Best Practices in SensingLec 33Sensor SamplingLec 33Sensing position, Activity, Environment.11Lec 28Lec 29Data transfer with AndroidLec 30Lec 34	
Lec 27Show Project Update (Contd.)10Lec 31Sensor SamplingLec 32Best Practices in SensingLec 33Sensing position, Activity, Environment.11Lec 28Communication Management in Android Java SocketsLec 30Lec 3012Lec 34Show Project Update	9
10Lec 31 Lec 32 Lec 32Sensor Sampling Best Practices in Sensing Lec 3311Lec 28 Lec 29 Lec 30Communication Management in Android Java Sockets Data transfer with Android Lec 3012Lec 34Show Project Update	
Lec 32 Lec 33Best Practices in Sensing Sensing position, Activity, Environment.11Lec 28 Lec 29 Lec 30Communication Management in Android Java Sockets Data transfer with Android Lec 3012Lec 34Show Project Update	
Lec 33Sensing position, Activity, Environment.11Lec 28Communication Management in Android Java SocketsLec 29Data transfer with AndroidLec 30Lec 34	10
11Lec 28 Lec 29 Lec 30Communication Management in Android Java Sockets Data transfer with Android12Lec 34Show Project Update	
Lec 29 Lec 30Data transfer with Android12Lec 34Show Project Update	
Lec 30 12 Lec 34 Show Project Update	11
12 Lec 34 Show Project Update	
J I	
Lec 35 Show Project Undate (Contd.)	12
Let 55 Show Project Optate (Contu.)	
Lec 36 Show Project Update (Contd.)	
13Lec 37Wireless Traffic Analysis from Large Scale Data sets	13
Lec 38 Call Data Record	
Lec 39 Home Assignment: Case Study	
14 Lec 40 Viva	14
Lec 41 Submission of Final Project	
Lec 42 Project Presentation	

- 1. Handbook on Mobile and Ubiquitous Computing: Status and Perspective (1st Edition) -Laurence T. Yang, EviS Yukur and Seng W. Loke; CRC Press (2013)
- 2. Android Studio 3.0 Development Essentials (1st Edition) Android 8 Edition; CreateSpace Independent Publishing Platform (2017)

CSE-451

Simulation and Modeling

Pre-requisite: None

Rationale:

This course motivates to enable a substitute of physical experimentation that is often utilized when conducting experiments on a real system which is impossible or impractical, often because of cost or time and instead uses mathematical knowledge and computer's computation power to solve real-world problems reasonably and in a time efficient manner.

Objective:

1. To recognize different parameters and variables that affects a system's simulation.

2. To design a model for a particular dataset and analyze a system's behaviour for real life problems.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Define basic concepts in modeling and simulation (M&S).
- 2. Classify various simulation models and give practical examples for each category.
- 3. Construct a model for a given set of data and motivate its validity.

Course Content :

Simulation modeling basics: systems, models and simulation; Classification of simulation model; Steps in a simulation study; Concepts in discrete-event simulation: event scheduling vs. process interaction approaches, Time-advance mechanism, organization of a discrete-event simulation model; continuous simulation models; Combined discrete-continuous models; Monte Carlo simulation; Simulation of queuing systems. Building valid and credible simulation models: validation principles and techniques, statistical procedures (or comparing real-world observations and simulation outputs, input modeling; Generating random numbers and random variants; Output analysis. Simulation languages; Analysis and modeling of some practical systems, Random Number Generator, Random Variables, Probability Distribution.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, presentation, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

				Pro	ogra	am ()utc	ome	(P ())		
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Define basic concepts in modeling and simulation (M&S).	\checkmark											
2. Classify various simulation models and give practical examples for each category.		\checkmark										
3. Construct a model for a given set of data and motivate its validity.			\checkmark									

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction to Simulation	
	Lec 2	Applications of Simulation	
	Lec 3	System and System Environment	
2	Lec 4	Attributes of a System	
	Lec 5	Types of Models	
	Lec 6	Components and Organization of a Discrete	
	Event Simulation Model		Class Test 1
3	Lec 7	Single Server Queuing System	Class Test I
	Lec 8	Performance Measure	
	Lec 9	Event Routines	
4	Lec 10	Review Of Basic Probability And Statistics	
	Lec 11	PDF And CDF	
	Lec 12	Properties Of Random Variables	
5	Lec 13	Covariance and Correlation	
	Lec 14	Jointly Continuous Random Variables	Class Test 2
	Lec 15	Simulation of Inventory System	
6	Lec 16	Continuous Simulation	
	Lec 17	Predator-Prey Model	
	Lec 18	Useful Probability Distributions	

-	I 10	Demonstration of Continuous Distributions					
7	Lec 19	Parameterization of Continuous Distributions					
	Lec 20	Continuous Probability Distribution					
	Lec 21	Continuous Probability Distribution (Contd.)					
8	Lec 22	Discrete Probability Distribution					
	Lec 23	Discrete Probability Distribution (Contd.)					
	Lec 24	Monte Carlo Simulation					
9	Lec 25	Monte Carlo Simulation (Contd.)					
	Lec 26	Generating Random Variables					
	Lec 27	Random Variable Method: Inverse Transform	Class Test 3				
10	Lec 31	Random Variable Method: Composition	Class Test 5				
	Lec 32	Random Variable Method: Convolution					
	Lec 33						
		Rejection					
11	Lec 28	Random Variable Method: Acceptance -					
	Rejection (Contd.)						
	Lec 29Mathematical Problems For Inverse Method						
	Lec 30	Generating Random Variates					
12	Lec 34	Acceptance-Rejection Method For Generating					
		Random Variates					
	Lec 35	Sample Variance And Mean					
	Lec 36						
13	Lec 37	Mathematical Problems of Central Limit					
		Class Test 4					
	Lec 38	Lec 38 Confidence Interval					
	Lec 39	Test of Hypothesis And its Error					
14	Lec 40	Markov's Inequality and Chebyshev's					
		Inequality					
	Lec 41	Combined Discrete-Continuous Simulation					
	Lec 42	Validation and Verification Of Simulation					
		Model					
L	l	1					

- Simulation Modeling and Analysis (5th Edition) Law A. M., Kelton W. D.; McGraw Hill (2014)
- 2. Computer Aided Modeling and simulation J. A. Spriet
- 3. Computer Simulation and Modeling R. S. Lehman
- 4. System Simulation G. Cordon

3 hours in alternate week, 0.75 Cr.

CSE-452 Simulation and Modeling Sessional

Pre-requisite: None

Rationale:

This course motivates to design various models to solve real-world problems using mathematics, computer programming language, computation power etc. and analyze the behaviour of a system for different types of dataset to provide a reasonable decision regarding the performance of a system in a cost and time effective manner.

Objective:

- 1. To design a model for a physical experimentation using different programming languages on different platforms.
- 2. To analyze the characteristics of the simulation result basing on different sets of data and test its validity.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Generate and test random number variants and apply them to develop simulation models.
- 2. Select and analyze output data produced by a model and test the validity of the model.
- 3. Construct a model for a given set of data and motivate its validity.

Course Content :

Simulation modeling basics: systems, models and simulation, Classification of simulation model, Steps in a simulation study, Single Server Queuing System, Inventory Management System, Monte Carlo Method, Pure Pursuit Problem, Probability Distribution Fitting, Random Number Generation, Hypothesis Testing.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, lab test, quiz, viva.

Assessment Methods & their Weights:

Assessment Method	(100%)
Lab Test	40
Quiz	20
Viva	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

				Pro	gra	m (Duto	com	e (P	0)		
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
1. Generate and test random number												
variants and apply them to develop										\checkmark		
simulation models.												
2. Select and analyze output data produced												
by a model and test the validity of the											\checkmark	
model.												
3. Construct a model for a given set of data									1			
and motivate its validity.									V			

Week	Lecture	Topics	Remarks
1	Lec 1	Simulation Modeling Basics	
	Lec 2	Systems, Models and Simulation Types	
	Lec 3	Sequence of Simulation Study	
2	Lec 4	Single Server Queuing System	
	Lec 5	Lab Assignment	
	Lec 6	Home Assignment	
3	Lec 7	Single Server Queuing System (Contd.)	
	Lec 8	Lab Assignment	
	Lec 9	Home Assignment	
4	Lec 10	Inventory Management System	
	Lec 11	Lab Assignment	
	Lec 12	Home Assignment	

_	L ao 12	Laurentem Menserment Sustem (Control)
5	Lec 13	Inventory Management System (Contd.)
	Lec 14	Lab Assignment
	Lec 15	Home Assignment
6	Lec 16	Monte Carlo Method
	Lec 17	Lab Assignment
	Lec 18	Home Assignment
7	Lec 19	Monte Carlo Method (Contd.)
	Lec 20	Lab Assignment
	Lec 21	Home Assignment
8	Lec 22	Pure Pursuit Problem
	Lec 23	Lab Assignment
	Lec 24	Home Assignment
9	Lec 25	Pure Pursuit Problem (Contd.)
	Lec 26	Lab Assignment
	Lec 27	Home Assignment
10	Lec 31	Probability Distribution Fitting
	Lec 32	Lab Assignment
	Lec 33	Home Assignment
11	Lec 28	Probability Distribution Fitting (Contd.)
	Lec 29	Lab Assignment
	Lec 30	Home Assignment
12	Lec 34	Random Number Generation
	Lec 35	Lab Assignment
	Lec 36	Home Assignment
13	Lec 37	Hypothesis Testing
	Lec 38	Lab Assignment
	Lec 39	Home Assignment
14	Lec 40	Lab Test
	Lec 41	Quiz
	Lec 42	Viva

1. Discrete-Event System Simulation (5th Edition) - Jerry Banks; Prentice Hall (2009)

CSE-453

3 hours in a week, 3.00Cr.

Data Ware-housing and Data Mining

Pre-requisite: NONE

Rationale:

For better data analysis, visualization and decision making concepts of data ware housing and data mining plays vital role.

Objective:

1. To evaluate accuracy of models/ algorithms, discover and measure interesting patterns from different kinds of databases of clustering, classification, association finding, feature selection and visualization to real world data.

2. To identify problems profitably be addressed via data mining methods.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

1. Decide and evaluate models/ algorithms with respect to their accuracy.

2. Discover and measure interesting patterns from different kinds of databases. Apply the techniques of clustering, classification, association finding, feature selection and visualization to real world data.

3. Learn to identify problems that can profitably be addressed via data mining methods.

Course Content:

Introduction; Data warehousing and OLAP technology for data mining; Data preprocessing; Data mining

primitives, languages and systems; Data visualization techniques; Data Cube computation and multidimensional data analysis; Descriptive data mining: characterization and comparison; Association analysis; Classification and prediction; Cluster analysis; Mining complex types of data; Applications and trends in data mining.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, final exam.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Decide and evaluate models/ algorithms with respect to their accuracy		\checkmark										
Discover and measure interesting patterns from different kinds of databases. Apply the techniques of clustering, classification, association finding, feature selection and visualization to real world data.			\checkmark									
Learn to identify problems that can profitably be addressed via data mining methods.		\checkmark										

Week	Lecture	Topics	Class Test
1	Lec 1	Introduction	
	Lec 2		
	Lec 3		
2	Lec 4	Data warehousing and OLAP technology for	
	Lec 5	data mining	
	Lec 6		
3	Lec 7	Data preprocessing	Class Test 1
	Lec 8		
	Lec 9		
4	Lec 10	Data mining	
	Lec 11	primitives, languages and systems	
	Lec 12		
5	Lec 13	Data Visualization Techniques	
	Lec 14		
	Lec 15		Class Test 2
6	Lec 16	Data Cube computation	Class Test 2
	Lec 17		
	Lec 18		
7	Lec 19	Multidimensional data analysis	
	Lec 20		
	Lec 21		
8	Lec 22	Descriptive Data mining	
	Lec 23		
	Lec 24		
9	Lec 25	Characterization and comparison	
	Lec 26		Class Test 3
	Lec 27		

10	Lec 31	Association analysis	
	Lec 32		
	Lec 33		
11	Lec 28	Classification and prediction	
	Lec 29		
	Lec 30		
12	Lec 34	Cluster analysis	
	Lec 35		
	Lec 36		
13	Lec 37	Mining complex types of data	
	Lec 38		Class Test 4
	Lec 39		
14	Lec 40	Applications and trends in data mining	
	Lec 41		
	Lec 42		

- 1. Data Mining: Concepts and Techniques Jiawei Han, MichelineKamber, and Jian Pei, (Morgan Kaufmann)
- 2. Data Mining and Data Warehousing Bharat BhushanAgarwal, SumitPrakashTayal
- 3. Data Warehousing, Data Mining, and OLAP Alex Berson and Stephen J. Smith

CSE-454

3 hours in alternate week, 0.75 Cr.

Data Ware-housing and Data Mining Sessional

Pre-requisite: None

Rationale:

Implementing data analysis methods, visualization and decision making concepts of data ware housing and data mining.

Objective:

- 1. Gain a working knowledge of the strengths and limitations of modern data mining methods (algorithms).
- 2. Learn to identify problems that can profitably be addressed via data mining methods.
- 3. Learn how to set up data for data mining experiments.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

- 1. Gain a working knowledge of the strengths and limitations of modern data mining methods (algorithms).
- 2. Learn to identify problems that can profitably be addressed via data mining methods.

3. Learn how to set up data for data mining experiments.

Course Content:

Data warehousing and OLAP technology, Data preprocessing, Data visualization techniques, Data Cube computation and multidimensional data analysis, Association analysis; Classification and prediction; Cluster analysis; Mining complex types of data.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, lab tests, quiz, viva.

Assessment Methods & their Weights:

Assessment Method	(100%)
Lab Test	40
Quiz	20
Viva	10
Class Participation	10
Report	10
Class Assessment	10

Mapping of Course Outcomes (CO) and Program Outcomes:

	Program Outcome (PO)											
Course Outcomes(CO) of the Course	1	2	3	4	5	6	7	8	9	10	11	12
Gain a working knowledge of the strengths and limitations of modern data mining methods (algorithms).	٧											
Learn to identify problems that can profitably be addressed via data mining methods.		٧										
Learn how to set up data for data mining experiments.			V									

Week	Lecture	Topics	Remarks
1	Lec 1	Orientation lab	
	Lec 2	Practical on Data warehousing	
	Lec 3		
2	Lec 4	Implementing Data preprocessing techniques	
	Lec 5		Assignment
	Lec 6		

3	Lec 7	Implementing Data visualization techniques	
	Lec 8	Implementing association analysis	Assignment
	Lec 9		
4	Lec 10	Practice on Classification and prediction;	
	Lec 11		Lab Test 1
	Lec 12		
5	Lec 13	Practice on Cluster analysis	
	Lec 14		Assignment
	Lec 15		
6	Lec 16	Final Lab Test	
	Lec 17		
	Lec 18		
7	Lec 19	Final Quiz	
	Lec 20	Viva	
	Lec 21		

- 1. Data Mining: Concepts and Techniques Jiawei Han, Micheline Kamber, and Jian Pei, (Morgan Kaufmann)
- 2. Data Mining and Data Warehousing Bharat Bhushan Agarwal, Sumit Prakash Tayal